Radiosynthesis and Quality Control of [67Ga]-3,4-dimethoxylated Porphyrin Complex as a Possible Imaging agent

Document Type : Research article


1 School of Radiation Applications, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran, P.O.Box: 31485-498.

2 Department of Chemistry. Karaj Branch, Islamic Azad University, Karaj, Iran.

3 Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.


Radiolabeled porphyrins are potential tumor avid radiopharmaceuticals because of their impersonation in the human body, ability to complex various radionuclides, water solubility, low toxicity etc. in this work a radiogallium porphyrin complex has been developed. [67Ga] labeled 5,10,15,20-tetrakis(3,4-dimethoxyphenyl) porphyrin ([67Ga]-TDMPP) was prepared using freshly prepared [67Ga]GaCl3 and 5,10,15,20-tetrakis(3,4-dimethoxyphenyl) porphyrin (H2TDMPP) for 60 min at 100C (. Stability of the complex was checked in final formulation and human serum for 24 h, followed by biodistribution and imaging studies in wild type rats up to 24 h. The radiocomplex was obtained with radiochemical purity >99% (ITLC) and >98% (HPLC), specific activity: 12-15 GBq/mmol. The partition coefficient was determined (log P=1.63). A detailed comparative pharmacokinetic study performed for 67Ga cation and [67Ga]-TDMPP. The complex is mostly washed out from the circulation through kidneys. Myocardial uptake was significantly observed by SPECT and biodistribution studies. Knee and shoulder joints demonstrated significant activity uptake in 2h post injection. Higher water solubility of the complex due to ionic nature of the complex is an advantage for rapid wash-out of the complex from the system, the complex has significant joint uptake compared to other radiolabeled porphyrins which the mechanisms are explained.