References
(1) Rufini A, Tucci P, Celardo I and Melino G.
Senescence and aging: the critical roles of p53.
Oncogene (2013) 32: 5129-43.
(2) Mowla SN, Lam EW and Jat PS. Cellular senescence
and aging: the role of B-MYB. Aging Cell (2014)
13: 773-9.
(3) Campisi J. Senescent cells, tumor suppression, and
organismal aging: good citizens, bad neighbors.
Cell (2005) 120: 513-522.
(4) Ben-Porath I and Weinberg RA. When cells get
stressed: an integrative view of cellular senescence.
J. Clin. Invest. (2004) 113: 8-13.
(5) Momtaz S and Abdollahi M. A comprehensive review
of biochemical and molecular evidences from
animal and human studies on the role of oxidative
stress in aging: an epiphenomenon or the cause.
Japan Anti-Vivisection Association. (2012) 7: 1-19.
(6) Oliveira MC and Schoffen JPF. Oxidative stress
action in cellular aging. Braz. Arch. Biol. Technol.
(2010) 53: 1333-42.
(7) Cuadrado A and Nebreda AR. Mechanisms and
functions of p38 MAPK signalling. Biochem. J.
(2010) 429: 403-17.
(8) Han J and Sun P. The pathways to tumor suppression via
route p38. Trends Biochem. Sci. (2007) 32: 364-71.
(9) Park HY and Sin DD. Stress-induced premature
senescence: another mechanism involved in the
process of accelerated aging in chronic obstructive
pulmonary disease. In: Inflammation, Advancing
Age and Nutrition, chapter 16. (2014) 193-202.
(10) Coppé JP, Desprez PY, Krtolica A and Campisi J.
The senescence-associated secretory phenotype:
the dark side of tumor suppression. Annu. Rev.
Pathol. (2010) 5: 99-118.
(11) Kandhaya-Pillai R, Miro-Mur F, Alijotas-Reig J,
Tchkonia T, Kirkland JL and Schwartz S. TNFαsenescence initiates a STAT-dependent positive
feedback loop, leading to a sustained interferon
signature, DNA damage, and cytokine secretion.
Aging (Albany NY) (2017) 9: 2411-35.
(12) Hodjat M, Rezvanfar MA and Abdollahi M. A
systematic review on the role of environmental
toxicants in stem cells aging. Food Chem. Toxicol.
(2015) 86: 298-308.
(13) Friedman M. Chemistry, biochemistry, and safety of
acrylamide. A review. J. Agric. Food Chem. (2003)
51: 4504-26.
176
Mahdizade E et al. / IJPR (2021), 20 (4): 165-177
(14) Friedman M. Biological effects of Maillard browning
products that may affect acrylamide safety in food:
biological effects of Maillard products. Adv. Exp.
Me. Biol. (2005) 561: 135-56.
(15) Dearfield KL, Douglas GR, Ehling UH, Moore
MM, Sega GA and Brusick DJ. Acrylamide: a review
of its genotoxicity and an assessment of heritable
genetic risk. Mutat. Res. (1995) 330: 71-99.
(16) Kahkeshani N, Saeidnia S and Abdollahi M. Role
of antioxidants and phytochemicals on acrylamide
mitigation from food and reducing its toxicity. J.
Food Sci. Technol. (2015) 52: 3169-86.
(17) Besaratinia A and Pfeifer GP. A review of
mechanisms of acrylamide carcinogenicity.
Carcinogenesis (2007) 28: 519-28.
(18) Liu Z, Song G, Zou C, Liu G, Wu W, Yuan T and Liu
X. Acrylamide induces mitochondrial dysfunction
and apoptosis in BV-2 microglial cells. Free Radic.
Biol. Med. (2015) 84: 42-53.
(19) Yousef M and El-Demerdash F. Acrylamide-induced
oxidative stress and bio-chemical perturbations in
rats. Toxicology (2006) 219: 133-41.
(20) Venkatasubbaiah K, Sandhya MVD and Rao KaK.
Acrylamide induced oxidative stress in rat and
chick embryonic liver tissues. Indo Am. J. Pharm.
Res. (2014) 4: 2791-8.
(21) Hodjat M, Baeeri M, Rezvanfar MA, Rahimifard
M, Gholami M and Abdollahi M. On the
mechanism of genotoxicity of ethephon on
embryonic fibroblast cells. Toxicol. Mech. Methods
(2017) 27: 173-80.
(22) Kacar S, Vejselova D, Kutlu HM and Sahinturk V.
Acrylamide-derived cytotoxic, anti-proliferative,
and apoptotic effects on A549 cells. Hum. Exp.
Toxicol. (2018) 37: 468-74.
(23) Nowak A, Zakłos-Szyda M, Żyżelewicz D, Koszucka
A and Motyl I. Acrylamide decreases cell viability,
and provides oxidative stress, DNA damage, and
apoptosis in human colon adenocarcinoma cell line
caco-2. Molecules (2020) 25: 368.
(24) Dasari A, Bartholomew JN, Volonte D and Galbiati
F. Oxidative stress induces premature senescence
by stimulating caveolin-1 gene transcription
through p38 mitogen-activated protein kinase/
Sp1–mediated activation of two GC-rich promoter
elements. Cancer Res. (2006) 66: 10805-14.
(25) Moeini-Nodeh S, Rahimifard M, Baeeri M and
Abdollahi M. Functional improvement in rats’
pancreatic islets using magnesium oxide nanoparticles
through antiapoptotic and antioxidant pathways. Biol.
Trace Elem. Res. (2017) 175: 146-55.
(26) Hosseini A, Sharifi AM, Abdollahi M, Najafi R,
Baeeri M, Rayegan S, Cheshmehnour J, Hassani S,
Bayrami Z and Safa M. Cerium and yttrium oxide
nanoparticles against lead-induced oxidative stress
and apoptosis in rat hippocampus. Biol. Trace
Elem. Res. (2015) 164: 80-9.
(27) Navaei-Nigjeh M, Gholami M, Fakhri-Bafghi
MS, Baeeri M and Abdollahi M. Molecular and
biochemical evidences for beneficial effects of zinc
oxide nanoparticles in modulation of chlorpyrifos
toxicity in human lymphocytes. Iran. J. Pharm.
Res. (2018) 17: 927-39.
(28) Shiri M, Navaei-Nigjeh M, Baeeri M, Rahimifard
M, Mahboudi H, Shahverdi AR, Kebriaeezadeh A
and Abdollahi M. Blockage of both the extrinsic
and intrinsic pathways of diazinon-induced
apoptosis in PaTu cells by magnesium oxide and
selenium nanoparticles. Int. J. Nanomedicine
(2016) 11: 6239-50.
(29) Rahimifard M, Navaei-Nigjeh M, Baeeri M,
Maqbool F and Abdollahi M. Multiple protective
mechanisms of alpha-lipoic acid in oxidation,
apoptosis and inflammation against hydrogen
peroxide induced toxicity in human lymphocytes.
Mol. Cell. Biochem. (2015) 403: 179-86.
(30) Baeeri M, Mohammadi-Nejad S, Rahimifard M,
Moeini-Nodeh S, Khorasani R and Abdollahi
M. Molecular and biochemical evidence on the
protective role of ellagic acid and silybin against
oxidative stress-induced cellular aging. Mol. Cell.
Biochem. (2018) 441: 21-33.
(31) Rodríguez-Rodero S, Fernández-Morera JL,
Menéndez-Torre E, Calvanese V, Fernández AF
and Fraga MF. Aging Genetics and Aging. Aging
Dis. (2011) 2: 186-95.
(32) Faragher RG, McArdle A, Willows A and Ostler EL.
Senescence in the aging process. F1000Res. (2017)
6: 1219.
(33) Lee BY, Han JA, Im JS, Morrone A, Johung K,
Goodwin EC, Kleijer WJ, DiMaio D and Hwang
ES. Senescence-associated beta-galactosidase is
lysosomal beta-galactosidase. Aging Cell (2006) 5:
187-95.
(34) Kurz DJ, Decary S, Hong Y and Erusalimsky JD.
Senescence-associated β-galactosidase reflects
an increase in lysosomal mass during replicative
ageing of human endothelial cells. J. Cell Sci.
(2000) 113: 3613-22.
(35) Omidkhoda SF, Mehri S, Heidari S and Hosseinzadeh
H. Protective Effects of crocin against hepatic
damages in D-galactose aging model in rats. Iran.
J. Pharm. Res. (2020) 19: 440-50.
(36) Ou ZQ, Rades T and McDowell A. Anti-ageing
effects of Sonchus oleraceus L. (pūhā) leaf extracts
on H2O2-induced cell senescence. Molecules
(2015) 20: 4548-64.
(37) Debacq-Chainiaux F, Erusalimsky JD, Campisi J
177
Acrylamide Induced-cellular Senescence
and Toussaint O. Protocols to detect senescenceassociated beta-galactosidase (SA-betagal)
activity, a biomarker of senescent cells in culture
and in vivo. Nat. Protoc. (2009) 4: 1798-806.
(38) Kim KH, Park B, Rhee DK and Pyo S. Acrylamide
induces senescence in macrophages through a
process involving ATF3, ROS, p38/JNK, and a
telomerase-independent pathway. Chem. Res.
Toxicol. (2015) 28: 71-86.
(39) Prasad SN and Muralidhara. Evidence of acrylamide
induced oxidative stress and neurotoxicity in
Drosophila melanogaster-its amelioration with
spice active enrichment: relevance to neuropathy.
Neurotoxicology (2012) 33: 1254-64.
(40) Camougrand N and Rigoulet M. Aging and
oxidative stress: studies of some genes involved
both in aging and in response to oxidative stress.
Respir. Physiol. (2001) 128: 393-401.
(41) Anane R and Creppy EE. Lipid peroxidation as
pathway of aluminium cytoyoxicity in human
skin fibroblast cultures: prevention by superoxide
dismutase, catalase, vitamin E and C. Hum. Exp.
Toxicol. (2001) 20: 477-81.
(42) Sharma P, Bhushan Jha A, Dubey RS and Pessarakli
M. Reactive oxygen Species, oxidative damage, and
antioxidative defense mechanism in plants under
stressful conditions. J. Bot. (2012) 2012: 1-26.
(43) Srivastava SP, Das M and Seth PR. Enhancement
of lipid peroxidation in rat liver on acute exposure
to styrene and acrylamide a consequence of
glutathione depletion. Chem. Biol. Interact. (1983)
45: 373-80.
(44) Mannaa F, Abdel-Wahhab MA, Ahmed HH and
Park MH. Protective role of Panax ginseng
extract standardized with ginsenoside Rg3 against
acrylamide-induced neurotoxicity in rats. J. Appl.
Toxicol. (2006) 26: 198-206.
(45) Kopanska M, Czech J, Zagata P, Dobrek L, Thor
P and Formicki G. Effect of the different doses
of acrylamide on acetylocholinoesterase activity,
thiol groups, malondialdehyde concentrations in
hypothalamus and selected muscles of mice. J.
Physiol. Pharmacol. (2017) 68: 565-71.
(46) Jiang L, Cao J, An Y, Geng C, Qu S, Jiang L and
Zhong L. Genotoxicity of acrylamide in human
hepatoma G2 (HepG2) cells. Toxicol. In Vitro
(2007) 21: 1486-92.
(47) Barzilai A and Yamamoto K. DNA damage
responses to oxidative stress. DNA Repair (Amst)
(2004) 3: 1109-15.
(48) Brugarolas J, Chandrasekaran C, Gordon JI, Beach
D, Jacks T and Hannon GJ. Radiation-induced
cell cycle arrest compromised by p21 deficiency.
Nature (1995) 377: 552-7.
(49) Fitzgerald AL, Osman AA, Xie TX, Patel A, Skinner
H, Sandulache V and Myers JN. Reactive oxygen
species and p21Waf1/Cip1 are both essential for p53-
mediated senescence of head and neck cancer cells.
Cell Death Dis. (2015) 6: e1678.
(50) Davalli P, Mitic T, Caporali A, Lauriola A and
D’Arca D. ROS, cell senescence, and novel
molecular mechanisms in aging and age-related
diseases. Oxid. Med. Cell. Longev. (2016) 2016:
3565127.
(51) Sandborn WJ and Hanauer SB. Antitumor necrosis
factor therapy for inflammatory bowel disease: a
review of agents, pharmacology, clinical results,
and safety. Inflamm. Bowel Dis. (1999) 5: 119-33.
(52) Rovillain E, Mansfield L, Caetano C, AlvarezFernandez M, Caballero OL, Medema RH,
Hummerich H and Jat PS. Activation of nuclear
factor-kappaB signalling promotes cellular
senescence. Oncogene (2011) 30: 2356-66.
(53) Laveti D, Kumar M, Hemalatha R, Sistla R, Naidu
VG, Talla V, Verma V, Kaur N and Nagpal R. Antiinflammatory treatments for chronic diseases: a
review. Inflamm. Allergy Drug Targets (2013) 12:
349-61.
(54) Ren JL, Pan JS, Lu YP, Sun P and Han J.
Inflammatory signaling and cellular senescence.
Cell. Signal. (2009) 21: 378-83.
(55) Ghanbari S, Yonessi M, Mohammadirad A, Gholami
M, Baeeri M, Khorram-Khorshid HR, Gharibdoost
F and Abdollahi M. Effects of IMOD™ and
Angipars™ on mouse D-galactose-induced model
of aging. DARU (2012) 20: 68.
(56) El-Shitany NA, El-Bastawissy EA and El-Desoky
K. Ellagic acid protects against carrageenaninduced acute inflammation through inhibition of
nuclear factor kappa B, inducible cyclooxygenase
and proinflammatory cytokines and enhancement
of interleukin-10 via an antioxidant mechanism.
Int. Immunopharmacol. (2014) 19: 290-9.
(57) Baeeri M, Momtaz S, Navaei-Nigjeh M, Niaz
K, Rahimifard M, Ghasemi-Niri SF, Sanadgol
N, Hodjat M, Sharifzadeh M and Abdollahi M.
Molecular evidence on the protective effect of
ellagic acid on phosalone-induced senescence in
rat embryonic fibroblast cells. Food Chem. Toxicol.
(2017) 100: 8-23.
(58) Lakshmi D, Gopinath K, Jayanthy G, Anjum S,
Prakash D and Sudhandiran G. Ameliorating
effect of fish oil on acrylamide induced oxidative
stress and neuronal apoptosis in cerebral cortex.
Neurochem. Res. (2012) 37: 1859-67.
(59) Mehri S, Karami HV, Hassani FV and
Hosseinzadeh H. Chrysin reduced acrylamideinduced neurotoxicity in both in-vitro and in-vivo
assessments. Iran. Biomed. J. (2014) 18: 101-16.