Preparation and Determination of Drug-Polymer Interaction and In-vitro Release of Mefenamic Acid Microspheres Made of Cellulose Acetate Phthalate and/or Ethylcellulose Polymers

Document Type: Research article

Authors

1 Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. Drug Applied Reseach Center, Tabriz University of Medical Sciences, Tabriz, Iran.

2 Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

3 Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.

Abstract

The objective of this study was to formulate and evaluate the drug-polymer interaction of mefenamic acid (MA) using two polymers with different characteristics as ethylcellulose (EC) and/or cellulose acetate phthalate (CAP). Microspheres were prepared by the modified emulsion solvent evaporation (MESE). The effect of drug-polymer interaction was studied for each of microspheres. Important parameters in the evaluation of a microencapsulation technique are encapsulation efficiency, yield production, particle size, surface characteristics of microspheres, scanning electronic microscopy (SEM), powder X-ray diffraction analysis (XRD), and differential scanning calorimetry (DSC). The in-vitro release studies are performed in Tris buffer (pH 9) with Sodium lauryl sulfate (SLS). Microspheres containing CAP and EC showed 68-97% and 63-76% of entrapment efficiency, respectively. The thermogram X-ray and DSC showed stable character of MA in the microspheres and revealed an absence of drug polymer interaction. The prepared microspheres were spherical in shape and had a size range of 235-436 μm for CAP-microspheres and 358-442 μm for EC-microspheres. The results suggest that MA was successfully and efficiently encapsulated; the release rates of matrix microspheres are related to the type of polymer, only when polymers (EC and CAP combine with 1 : 1 ratio) were used to get prolonged drug release with reducing the polymers content in the microspheres. Data obtained from in-vitro release for microspheres and commercial capsule were fitted to various kinetic models and the high correlation was obtained in the peppas model.

Keywords