Peroxisomal Malfunction Caused by Mitochondrial Toxin 3-NP: Protective Role of Oxytocin

Document Type: Research article

Authors

Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Abstract

Peroxisomes are single membrane cell organelles with a diversity of metabolic functions. Here we studied the peroxisomal dysfunction and oxidative stress after 3-nitropropionic acid (3-NP) induced neurotoxicity and the possible protective effects of oxytocin. Adult male and female rats were subjected to Oxt and/or 3-NP treatment. The antioxidant enzymes, Superoxide dismutase (SOD) and Catalase (CAT) activities as well as expression level of Peroxin 14 (Pex14), a marker for peroxisomal number and Peroxisomal membrane protein of 70 kDa (PMP70), a metabolic transporter in peroxisome in different brain regions of both sexes were studied. The results indicated that 3-NP significantly decreased the expression level of Pex14 and PMP70 in various studied areas in male and female rats. In addition, 3-NP reduced the SOD and CAT activity in different brain regions in both sexes. OXT treatment increased the expression level of peroxisomal proteins Pex14 and PMP70 which are representative of peroxisome performance improvement. Besides, it ameliorated the antioxidant system capability through increasing the activity of the SOD and CAT in all studied brain regions including Striatum, Hippocampus, Prefrontal Cortex and Amygdala with no differences in male and female rats. This study demonstrated that toxin 3-NP, could ultimately cause peroxisomal malfunction and so determines the contribution of peroxisomal dysfunction in the etiology of HD pathology. OXT significantly increased peroxisomal function and antioxidant system defense capability, therefore illustrates that OXT might be an alternate treatment approach for the neurodegenerative diseases like HD.

Keywords

Main Subjects