Effect of Surfactant Type, Cholesterol Content and Various Downsizing Methods on the Particle Size of Niosomes

Document Type: Research article

Authors

1 Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

2 Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

3 Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Abstract

The present study was conducted to investigate the performance of different size reduction techniques including probe sonication, extrusion, and high pressure homogenization for nanosizing of niosomes. Also, the effects of cholesterol content and surfactant type on the size and poly dispersity index (PDI) of the formulations were evaluated. Various niosomal formulations composed of Brij 72, Span 60, or Tween 60 were prepared and then, to reduce vesicle size and minimize the PDI, the niosomes were treated by various post-processing procedures. Surfactant type showed a significant effect on the particle size of the niosomes. The particle size of Tween 60 niosomes was significantly larger than those of Span 60 and Brij 72 niosomes (P < 0.05), indicating that at the same cholesterol content, niosomes composed of a surfactant with a higher HLB value show larger particle size than those with a lower HLB value. The influences of cholesterol content as well as downsizing methods, on the particle size and distribution of niosomes were significantly dependent on the surfactant composition of the niosomes. Extrusion and probe sonication were found to be the most efficient methods for size reduction of the Tween 60 and Span 60 niosomes, while for downsizing of Brij 72 niosomes, all employed methods were efficient and resulted in the approximately similar size of about 200 nm. In conclusion, the selection of an efficient method for nanosizing of niosomes and also achievement of a desired size range, and homogeneity highly depends on the niosome composition, particularly on the employed surfactant type.

Keywords

Main Subjects