Wakai AP. Myocardial infarction (ST-elevation). BMJ
Clin. Evid. (2009) 2009: 0202
Skinner JS and Cooper A. Secondary prevention of
ischaemic cardiac events. BMJ Clin. Evid . (2011)
2011: 0206
Hynes B, Kumar AH, OꞌSullivan J, Klein Buneker
C, Leblond AL, Weiss S, Schmeckpeper J, Martin
K and Caplice N M. Potent endothelial progenitor
cell-conditioned media-related anti-apoptotic,
cardiotrophic, and pro-angiogenic effects post-
myocardial infarction are mediated by insulin-like
growth factor-1. Eur. Heart J. (2013) 34: 782-9.
Rizk NN, Myatt-Jones J, Rafols J and Dunbar JC.
Insulin like growth factor-1 (IGF-1) decreases
ischemia-reperfusion induced apoptosis and necrosis
in diabetic rats. Endocrine (2007) 31: 66-71.
Fontana L, Vinciguerra M and Longo VD. Growth
factors, nutrient signaling, and cardiovascular aging.
Circ. Res. (2012) 110: 1139-50.
Li Q, Li B, Wang X, Leri A, Jana KP, Liu Y, Kajstura
J, Baserga R and Anversa P. Overexpression of insulin-
like growth factor-1 in mice protects from myocyte
death after infarction, attenuating ventricular dilation,
wall stress, and cardiac hypertrophy. J. Clin. Invest.
(1997) 100: 1991-9.
OꞌSullivan JF, Leblond AL, Kelly G, Kumar AH,
Metharom P, Buneker CK, Alizadeh-Vikali N, Hristova
I, Hynes BG, OꞌConnor R and Caplice NM. Potent
long-term cardioprotective effects of single low-dose
insulin-like growth factor-1 treatment postmyocardial
infarction. Circ. Cardiovasc. Interv. (2011) 4: 327-35.
Haleagrahara N, Chakravarthi S and Mathews
L. Insulin like growth factor-1 (IGF-1) causes
overproduction of IL-8, an angiogenic cytokine and
stimulates neovascularization in isoproterenol-induced
myocardial infarction in rats. Int. J. Mol. Sci . (2011)
12: 8562-74.
Cochain C, Channon KM and Silvestre JS.
Angiogenesis in the infarcted myocardium. Antioxid.
Redox. Signal. (2013) 18: 1100-13.
Sun YY, Du ZH and Zhao YX. Disruption of Circadian
Rhythms and Sleep in Critical Illness: Potential
Implications for Angiogenesis After Myocardial
Infarction. A Review. Curr. Pharm. Des . (2015) 21:
3523-32.
Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M,
Liao R, Colucci WS and Walsh K. Disruption of
coordinated cardiac hypertrophy and angiogenesis
contributes to the transition to heart failure. J. Clin.
Invest. (2005) 115: 2108-18.
Mitsos S, Katsanos K, Koletsis E, Kagadis GC,
Anastasiou N, Diamantopoulos A, Karnabatidis D and
Dougenis D. Therapeutic angiogenesis for myocardial
ischemia revisited: basic biological concepts and focus
on latest clinical trials. Angiogenesis (2012) 15: 1-22.
Henning RJ. Therapeutic angiogenesis: angiogenic
growth factors for ischemic heart disease. Future
Cardiol. (2016) 12.
Krawiec JT and Vorp DA. Adult stem cell-based tissue
engineered blood vessels: a review. Biomaterials
(2012) 33: 3388-400.
Vimalraj S and Selvamurugan N. MicroRNAs
expression and their regulatory networks during
mesenchymal stem cells differentiation toward
osteoblasts. Int. J. Biol. Macromol . (2014) 66: 194-
202.
Prockop DJ. Repair of tissues by adult stem/progenitor
cells (MSCs): controversies, myths, and changing
paradigms. Mol. Ther. (2009) 17: 939-46.
Anversa P, Rota M, Urbanek K, Hosoda T, Sonnenblick
EH, Leri A, Kajstura J and Bolli R. Myocardial aging-
-a stem cell problem. Basic Res. Cardiol. (2005) 100:
482-93.
Nekanti U, Mohanty L, Venugopal P, Balasubramanian
S, Totey S and Ta M. Optimization and scale-up of
Whartonꞌs jelly-derived mesenchymal stem cells for
clinical applications. Stem. Cell Res. (2010) 5: 244-54.
Lupu M, Khalil M, Andrei E, Iordache F, Pfannkuche
K, Neef K, Georgescu A, Buzila C, Brockmeier K,
Maniu H and Hescheler J. Integration properties of
Whartonꞌs jelly-derived novel mesenchymal stem cells
into ventricular slices of murine hearts. Cell. Physiol.
Biochem. (2011) 28: 63-76.
Kim DW, Staples M, Shinozuka K, Pantcheva P,
Kang SD and Borlongan CV. Whartonꞌs jelly-derived
mesenchymal stem cells: phenotypic characterization
and optimizing their therapeutic potential for clinical
applications. Int. J. Mol. Sci. (2013) 14: 11692-712.
Zhang W, Liu XC, Yang L, Zhu DL, Zhang YD, Chen Y
and Zhang HY. Whartonꞌs jelly-derived mesenchymal
stem cells promote myocardial regeneration and
cardiac repair after miniswine acute myocardial
infarction. Coron. Artery. Dis. (2013) 24: 549-58.
Gao LR, Chen Y, Zhang NK, Yang XL, Liu HL, Wang
ZG, Yan XY, Wang Y, Zhu ZM, Li TC, Wang LH, Chen
HY, Chen YD, Huang CL, Qu P, Yao C, Wang B, Chen
GH, Wang ZM, Xu ZY, Bai J, Lu D, Shen YH, Guo
F, Liu MY, Yang Y, Ding YC, Yang Y, Tian HT, Ding
QA, Li LN, Yang XC and Hu X. Intracoronary infusion
of Whartonꞌs jelly-derived mesenchymal stem cells in
acute myocardial infarction: double-blind, randomized
controlled trial. BMC Med. (2015) 13: 162.
Gaffney J, Matou-Nasri S, Grau-Olivares M and
Slevin M. Therapeutic applications of hyaluronan.
Mol. BioSyst. (2010) 6: 437-43.
Prestwich GD and Kuo JW. Chemically-modified HA
for therapy and regenerative medicine. Curr. Pharm.
Biotechnol. (2008) 9: 242-5.
Browning MB, Russell B, Rivera J, Hook M and
Cosgriff-Hernandez EM. Bioactive hydrogels with
enhanced initial and sustained cell interactions.
Biomacromolecules (2013) 14: 2225-33.
Hutson CB, Nichol JW, Aubin H, Bae H, Yamanlar
S, Al-Haque S, Koshy ST and Khademhosseini A.
Synthesis and characterization of tunable poly(ethylene
glycol): gelatin methacrylate composite hydrogels.
Tissue Eng. Part A. (2011) 17: 1713-23.
Shi K, Wang YL, Qu Y, Liao JF, Chu BY, Zhang
HP, Luo F and Qian ZY. Synthesis, characterization,
and application of reversible PDLLA-PEG-PDLLA
copolymer thermogels in-vitro and in-vivo. Sci. Rep .
(2016) 6: 19077.
Lakshmanan R, Kumaraswamy P, Krishnan UM and
Sethuraman S. Engineering a growth factor embedded
nanofiber matrix niche to promote vascularization for
functional cardiac regeneration. Biomaterials (2016)
97: 176-95.
Nassiri SM, Khaki Z, Soleimani M, Ahmadi SH,
Jahanzad I, Rabbani S, Sahebjam M, Ardalan FA and
Fathollahi MS. The similar effect of transplantation
of marrow-derived mesenchymal stem cells with or
without prior differentiation induction in experimental
myocardial infarction. J. Biomed. Sci. (2007) 14: 745-
55.
Davani EY, Brumme Z, Singhera GK, Cote HC,
Harrigan PR and Dorscheid DR. Insulin-like growth
factor-1 protects ischemic murine myocardium from
ischemia/reperfusion associated injury. Crit. Care
(2003) 7: R176-83.
Tejada T, Tan L, Torres RA, Calvert JW, Lambert JP,
Zaidi M, Husain M, Berce MD, Naib H, Pejler G,
Abrink M, Graham RM, Lefer DJ, Naqvi N and Husain
A. IGF-1 degradation by mouse mast cell protease 4
promotes cell death and adverse cardiac remodeling
days after a myocardial infarction. Proc. Nat. Acad.
Sci. U S A (2016) 113: 6949-54.
Scheinowitz M, Abramov D, Kotlyar A, Savion N
and Eldar M. Continuous administration of insulin-
like growth factor-I and basic fibroblast growth factor
does not affect left ventricular geometry after acute
myocardial infarction in rats. Int. J. Cardiol . (1998)
63: 217-21.
Hwang H and Kloner RA. The combined administration
of multiple soluble factors in the repair of chronically
infarcted rat myocardium. J. Cardiovasc. Pharmacol .
(2011) 57: 282-6.
Zhang H, Wang H, Li N, Duan CE and Yang YJ.
Cardiac progenitor/stem cells on myocardial infarction
or ischemic heart disease: what we have known from
current research. Heart Fail. Rev. (2014) 19: 247-58.
Shafiq M, Lee SH, Jung Y and Kim SH. Strategies for
recruitment of stem cells to treat myocardial infarction.
Curr. Pharm. Des. (2015) 21: 1584-97.
van Zuylen VL, den Haan MC, Geutskens SB, Roelofs
H, Fibbe WE, Schalij MJ and Atsma DE. Post-
myocardial infarct inflammation and the potential role
of cell therapy. Cardiovasc. Drugs Ther . (2015) 29:
59-73.
Kuraitis D, Ruel M and Suuronen EJ. Mesenchymal
stem cells for cardiovascular regeneration. Cardiovasc.
Drugs Ther. (2011) 25: 349-62.
Kalaszczynska I and Ferdyn K. Whartonꞌs jelly derived
mesenchymal stem cells: future of regenerative
medicine? Recent findings and clinical significance.
Biomed. Res. Int. (2015) 2015: 430847.
Padin-Iruegas ME, Misao Y, Davis ME, Segers
VF, Esposito G, Tokunou T, Urbanek K, Hosoda T,
Rota M, Anversa P, Leri A, Lee RT and Kajstura J.
Cardiac progenitor cells and biotinylated insulin-like
growth factor-1 nanofibers improve endogenous and
exogenous myocardial regeneration after infarction.
Circulation (2009) 120: 876-87.
Zhang GW, Gu TX, Guan XY, Sun XJ, Qi X, Li XY,
Wang XB, Lv F, Yu L, Jiang DQ and Tang R. HGF and
IGF-1 promote protective effects of allogeneic BMSC
transplantation in rabbit model of acute myocardial
infarction. Cell Prolif. (2015) 48: 661-70.
Chen CH, Wang SS, Wei EI, Chu TY and Hsieh PC.
Hyaluronan enhances bone marrow cell therapy for
myocardial repair after infarction. Mol. Ther. (2013)
21: 670-9.
Hasan A, Khattab A, Islam MA, Hweij KA, Zeitouny
J, Waters R, Sayegh M, Hossain MM and Paul A.
Injectable Hydrogels for Cardiac Tissue Repair after
Myocardial Infarction. Adv. Sci. (Weinh) . (2015) 2:
1500122.
Maeda H, Nakamura H and Fang J. The EPR effect
for macromolecular drug delivery to solid tumors:
Improvement of tumor uptake, lowering of systemic
toxicity, and distinct tumor imaging in-vivo. Adv. Drug
Deliv. Rev. (2013) 65: 71-9.
Lin CC and Metters AT. Hydrogels in controlled
release formulations: network design and mathematical
modeling. Adv. Drug Deliv. Rev. (2006) 58: 1379-408.
Kim SW, Bae YH and Okano T. Hydrogels: swelling,
drug loading, and release. Pharm. Res. (1992) 9: 283-
90.
Jaikumar D, Sajesh KM, Soumya S, Nimal TR,
Chennazhi KP, Nair SV and Jayakumar R. Injectable
alginate-O-carboxymethyl chitosan/nano fibrin
composite hydrogels for adipose tissue engineering.
Int. J. Biol. Macromol. (2015) 74: 318-26.
Nicodemus GD and Bryant SJ. Cell encapsulation
in biodegradable hydrogels for tissue engineering
applications. Tissue Eng. Part B. Rev. (2008) 14: 149-
65.
Zhang H, Zhou L and Zhang W. Control of scaffold
degradation in tissue engineering: a review. Tissue
Eng. Part B. Rev. (2014) 20: 492-502.
Yildirimer L and Seifalian AM. Three-dimensional
biomaterial degradation - Material choice, design
and extrinsic factor considerations. Biotechnol .Adv.
(2014) 32: 984-99.
Madihally SV and Matthew HW. Porous chitosan
scaffolds for tissue engineering. Biomaterials (1999)
20: 1133-42.
Simitzis J, Soulis S, Triantou D, Zoumpoulakis
L and Zotali P. Synthesis and characterization of
hydrolytically degradable copolyester biomaterials
based on glycolic acid, sebacic acid and ethylene
glycol. J. Mater. Sci. Mater. Med. (2011) 22: 2673-84.
Ruvinov E, Leor J and Cohen S. The promotion of
myocardial repair by the sequential delivery of IGF-
1 and HGF from an injectable alginate biomaterial in
a model of acute myocardial infarction. Biomaterials
(2011) 32: 565-78.
Toh WS and Loh XJ. Advances in hydrogel delivery
systems for tissue regeneration. Mater. Sci. Eng. C
Mater. Biol. Appl. (2014) 45: 690-7.
Geckil H, Xu F, Zhang X, Moon S and Demirci U.
Engineering hydrogels as extracellular matrix mimics.
Nanomedicine (Lond) (2010) 5: 469-84.
Alpert JS, Thygesen K, Antman E and Bassand
JP. Myocardial infarction redefined--a consensus
document of The Joint European Society of Cardiology/
American College of Cardiology Committee for the
redefinition of myocardial infarction. J. Am. Coll.
Cardiol. (2000) 36: 959-69.