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Abstract

The IL-1β plays a major role in inflammatory disorders and IL-1β production inhibitors 
can be used in the treatment of inflammatory and related diseases. In this study, quantitative 
relationships between the structures of 46 pyridazine derivatives (inhibitors of IL-1β production) 
and their activities were investigated by Multiple Linear Regression (MLR) technique Stepwise 
Regression Method (ES-SWR). The genetic algorithm (GA) has been proposed for improvement 
of the performance of the MLR modeling by choosing the most relevant descriptors. The 
results show that eight descriptors are able to describe about 83.70% of the variance in the 
experimental activity of the molecules in the training set. The physical meaning of the selected 
descriptors is discussed in detail. Power predictions of the QSAR models developed were 
evaluated using cross-validation, and validation through an external prediction set. The results 
showed satisfactory goodness-of-fit, robustness and perfect external predictive performance. 
The applicability domain was used to define the area of reliable predictions. Furthermore, the 
in silico screening technique was applied in order to predict the structure and potency of new 
compounds of this type using the proposed QSAR model.
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Introduction

In recent years, many efforts have been done 
toward the development of new therapeutic 
agents in the area of inflammatory diseases. 
Cytokines are multifunctional proteins that 
responsible for host defense mechanisms such 
as inflammatory, immune and hematogenic 
responses (1). Cytokines have been categorized 

as being proinflammatory (IL-1β, TNF-α, IL-6...) 
or anti-inflammatory (TGF-β, IL-10, IL-13...) 
depending on their effects on the immune system. 
Inflammatory cytokines play an important role in 
inflammatory disease. Consequently, inhibition 
the production of IL-1β can reduce levels of 
these proinflammatory cytokine, and thereby 
reduce inflammation and prevent destruction 
effects in diseases such as rheumatoid arthritis 
(RA), osteoarthritis (OA) and Crohn’s disease 
(2). For the rational design of novel IL-1β 
production inhibitors, quantitative structure-
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activity relationships (QSAR) models and in 
silico screening could be useful (3). QSAR is a 
powerful tool to study the relationship between 
activity and structural parameters and could be 
used for design new biological active compounds 
and predict their potency, toxicity, ADME,etc. In 
this study, a series of 5, 6-bis (4-methoxyphenyl) 
-pyridazin derivatives with IL-1β production 
inhibitory activity discovered by Matsuda et al 
(4, 5). According to our literatures review, no 
QSAR study was carried out on the mentioned 
series. In the present investigation, a quantitative 
structure–activity relationship was explored 
using different molecular descriptors. Previous 
studies demonstrated that linear QSAR models 
had good predictive ability therefore (6-9), a 
virtual screening study was then carried out to 
identify novel biologically active patterns by 
modification of the original molecules. The 
study led to the identification of novel structures, 
which are potent IL-1β production inhibitors 
based on the QSAR model. The structures were 
filtered using the domain of applicability of the 
QSAR model. 

Materials and methods
Data set
The biological data used in this study are the 

IL-1β production inhibitory (IC50) activity of a 
series of 5,6-bis (4-methoxyphenyl)-pyridazin 
derivatives (4, 5). The structural features and 
biological activity of these compounds are listed 
in Table 1. The biological data were converted 
to logarithmic scale (pIC50) and then used 
for subsequent QSAR analysis as dependent 
variables. The original data set was divided into 
a training set (n = 35) and a prediction set (n = 11) 
using the popular Kennard and Stones algorithm 
(10, 11). This algorithm has been widespread 
used with great success in many QSAR studies 
(12-14).

Descriptor generation
The chemical structure of molecules was 

constructed using Hyperchem package (Version 
7, Hypercube Inc., Florida 32601 USA). The 
Z-matrices of the structures were provided by 
the software and transferred to the Gaussian 
98 program. Complete geometry optimization 
was performed taking the most extended 

conformations as starting geometries. Semi 
empirical molecular orbital calculations (AM1) 
of the structures were performed using Gaussian 
98 program. A large numbers of molecular 
descriptors were calculated using HyperChem, 
Gaussian 98 and Dragon Packages. Gaussian 
98 was employed for calculation of different 
quantum chemical descriptors including 
dipole moment (DM), local charges, HOMO 
and LUMO energies, hardness (g); softness 
(S); electronegativity (v); and electrophilicity 
(x). Dragon software calculated different 
functional groups, topological, geometrical and 
constitutional descriptors for each molecule, and 
some chemical parameters including molecular 
volume (V), molecular surface area (SA), 
hydrophobicity (log P), hydration energy (HE) 
were calculated using Hyperchem software.

Data processing and modeling
The calculated descriptors were collected 

in a data matrix, D. First the descriptors were 
checked for constant or near-constant values and 
those detected were removed from the original 
data matrix. Then, the correlation of descriptors 
with each other’s and with the activity data was 
determined. Among the collinear descriptors 
detected (r > 0.9), one of them that had the highest 
correlation with activity was retained, and the 
rest were omitted (15, 16). For the development 
of QSAR equation stepwise multiple linear 
regression (MLR) was used. In stepwise 
regression, a multiple-term linear equation was 
built step-by-step. The basic procedures involve 
(i) identifying an initial model, (ii) iteratively 
‹stepping›, that is repeatedly altering the model 
at the previous step by adding or removing 
a predictor variable in accordance with the 
‹stepping criteria› (in our case, probability of F 
= 0.05 for inclusion; probability of F = 0.1 for 
exclusion for the forward selection method), 
and (iii) terminating the search when stepping 
is no longer possible given the stepping criteria, 
or when a specified maximum number of steps 
have been reached. Specifically, at each step, all 
variables are reviewed and evaluated to determine 
which one will contribute most to the equation. 
That variable will then be included in the model, 
and the process starts again. A limitation of 
the stepwise regression search approach is that 
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it presumes there is a single ‹best› subset of 
X variables and seeks to identify it. There is 
often no unique ‹best› subset, and all possible 
regression models with a similar number of X 
variables as in the stepwise regression solution 
should be fitted subsequently to study whether 
some other subsets of X variables might be better 
(17, 18). We used GA for variable selection in 
MLR regression. The applied GA used a binary 
representation as the coding technique for the 
given problem: The presence or absence of 
a descriptor in a chromosome was coded by 
1 or 0. The GA performed its optimization by 
variation and selection via the evaluation of the 
fitness function. The operators used here were 
crossover and mutation. The probability for 
the application of these operators was varied 
linearly with the generation renewal (0 ± 1% 
for mutation and 60 ± 90% for crossover). The 
population size was 100. For a typical run, the 
evolution of the generation was stopped when 
90% of the generations took the same fitness. 
The fitness function was the root mean square 
error of cross-validation (19).

Model validation
The goodness-of-fit of the resulted QSAR 

models were judged using statistical parameters 
such as correlation coefficient (R2), standard 
error of regression (SE), and variance ratio (F) 
at specified degrees of freedom. The generated 
QSAR equations were also validated by leave-
one-out cross-validation correlation coefficient 
(Q2) and root mean square error of cross-
validation (RMScv)(20). In addition, an external 
test set composed selected11 molecules was 
used to judge the overall prediction ability of 
the resulted models (see Table 1). According to 
Tropsha et al. (21). The predictive ability of a 
QSAR model should be tested on an external 
set of data that has not been taken into account 
during the process of developing the model. 
In particular, to assess the predictive power 
of QSAR models the correlation coefficient 
between the predicted and observed activities 
of compounds from an external test (R 2), the 
correlation coefficients for regressions through 
the origin (predicted versus observed activities, 
or observed versus predicted activities, i.e., 
R0

2 or Rꞌ02, respectively), and the slope of the 

regression lines through the origin (K and K ‹, 
respectively) were calculated. Tropsha et al. (21, 
22). considered a QSAR model to be predictive, 
if all of the following conditions are satisfied: (i) 
Q 2 > 0.5, (ii) R 2 > 0.6, (iii) R0

2 or Rꞌ0
2 is close to 

R2, such that [(R2 - R0
2) ⁄ r 2] or [(R2- Rꞌ0

2) ⁄ R 2] < 
0.1and (iv) 0.85 ≤ K ≤1.15 or 0.85 ≤ K ‹ ≤ 1.15. 
In addition, according to the recommendation 
of Roy and Roy [18], an additional statistic for 
external validation (rm2) was calculated as rm2 
= R2*[1-(R2-R0

2)1 ⁄ 2]. For a model with good 
external predictability, rm2 value should be > 
0.5. (23)

Y-randomization test
This technique ensures the robustness 

of a QSAR model. The dependent variable 
vector pIC50 is randomly shuffled and a new 
QSAR model is developed using the original 
independent variable matrix. The new QSAR 
models (after several repetitions) are expected 
to have low R2 and Q2 values. If the opposite 
happens then an acceptable QSAR model cannot 
be obtained for the specific modeling method 
and data (12).

Applicability domain
Finally the QSAR model was used to identify 

novel active compounds via an in silico screening 
procedure, and thus the definition of its domain 
of applicability is of particular importance. The 
utility of a QSAR model is based on its accurate 
prediction ability for new compounds. A model 
is valid only within its training domain, and 
new compounds must be assessed as belonging 
to the domain before the model is applied. The 
applicability domain is assessed by the leverage 
values for each compound. The threshold h* is 
generally fixed at 3(k + 1) ⁄ n (n is the number of 
training set compounds, and k is the number of 
model parameters), On the other hand, when the 
leverage value of a compound is lower than the 
threshold value, the probability of accordance 
between predicted and observed values is as 
high as that for the training set compounds (24).

In silico screening
Finally in silico screening procedure was 

carried out to identify a variety of potential 
novel lead compounds by presenting structural 
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modifications on the original dataset. Throughout 
the screening procedure, only the predictions 
that fall into the domain of applicability were 
considered reliable.

Results and Discussion

On the basis of Kennard-Stones algorithm, 
the dataset of the 46 pyridazine derivatives was 
divided into a training set (35 compounds) and a 
prediction or test set (11 compounds, see Table 
1). Stepwise regression was used on the training 
data set to develop MLR QSAR model. 

pIC50 = -102.168 (± 15.264) + 119.255(± 
17.542) MATS4m + 0.106(± 0.026) RDF 105u 
– 0.168(± 0.024) RDF100u – 5.458(± 1.131) 
GATS 3v + 0.269(± 0.053) RDF075v + 1.222(± 
0.293) C-005 + 0.073(± 0.022) RDF095u – 
0.006(± 0.002) Surface area

N = 35   R2 = 0.837   R2
adj= 0.780   F = 16.079     

S.E.= 0.330   Q2 = 0.733
RMScv = 0.374   R2 

pred= 0.754

The regression coefficients in this model 
are significant at the 95% level. This equation 
can predict and explain 75.4% and 83.7%, 
respectively, of the variance of the inhibitory 
activity.

The possibility of having included outliers in 
our dataset was investigated by calculating the 
standard residuals. Standardized residuals greater 
than 2.5 or less than -2.5 are considered large 
and indicate the exclusion of the respective data 
from the data set. The calculated standardized 
residuals were within the above upper and lower 
limits for all the compounds, and thus, none of 
them were excluded from the data set as outlier 
(3). The Figure1 showed that the good model 
was obtained with eight descriptors.

The above equation showed that the most 
significant descriptors are Moran autocorrelation 
of lag 4 weighted by mass (MATS4m), Radial 
Distribution Function - 105 / unweighted 
(RDF105u), Radial Distribution Function - 100 
/ unweighted (RDF100u), Geary autocorrelation 
of lag 3 weighted by van der Waals volume 
(GATS3v), Radial Distribution Function - 075 / 
weighted by van der Waals volume (RDF075v), 

CH3X (C-005), Radial Distribution Function - 
095 / unweighted (RDF095u) and surface area. 
The correlation matrix (Table 2) indicated that 
the eight selected descriptors are not highly 
correlated. Variance Inflation Factor (VIF) values 
for the eight descriptors (25-27), also shown in 
Table 2, demonstrate that the model contains no
multicollinearity.

Interpretation of the Selected Descriptors
The variety of factors such as molecular 

electrostatic potential, polarizability, 
hydrophobicity, and lipophobicity influence the 
binding of ligand to its target. MATS4m and 
GATS3v are Autocorrelation of Topological 
Structure. The 2D-autocorrelation descriptors 
explain how the values of certain functions, at 
intervals equal to the lag, are correlated. The 
2D autocorrelation descriptors represent the 
topological structure of the compounds, but 
are more complex in nature when compared 
to the classical topological descriptors. The 
computation of these descriptors involves 
the summations of different autocorrelation 
functions corresponding to different structural 
lags and leads to different autocorrelation 
vectors corresponding to the lengths of the 
sub-structural fragments. Basically, the pool of 
2D autocorrelation descriptors defines a wide 
2D space. On behalf of a greater applicability, 
physicochemical properties (atomic masses, 
atomic van der Waals volumes, atomic Sanderson 
electronegativities, and atomic polarizabilities) 
were inserted as weighting components. As a 
result, these descriptors address the topology of 
the structure or parts thereof in association with 
a specific physicochemical property. Bearing 
in mind this aspect, the interpretation of 2D 
autocorrelation descriptors was uneasy. Based on 
derived model the positive regression coefficient 
of MATS4m shows that small path lengths and 
branching in the molecule (lag 4 weighted by 
atomic mass) contribute to higher activity (28). 
RDF105u, RDF100u, RDF075v and RDF095u 
are Radial Distribution Function descriptors; the 
3D coordinates of the atoms of molecules can 
be transformed into a structure code that has 
a fixed number of descriptors irrespective of 
the size of a molecule. This task is performed 
by a structure coding technique referred to as 
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Radial Distribution Function code (RDF code). 
In general, there are some prerequisites for a 
structure code: 

• Independent from the number of atoms, i.e., 
the size of a molecule,

• Unambiguity regarding the three-
dimensional arrangement of the atoms, and

• Invariance against translation and rotation of 
the entire molecule.

Formally, the Radial Distribution Function 
of an ensemble of N atoms can be interpreted 
as the probability distribution to find an atom 
in a spherical volume of radius r. The equation 
represents the Radial Distribution Function code 
as it is used in this investigation:

g(r) = f × Σi
N-1  Σj

N  AiAje-B(r-rij)2

Where f is a scaling factor and N is the 
number of atoms. By including characteristic 
atomic properties A of the atoms i and j, the 
RDF codes can be used in different tasks to 
fit the requirements of the information to be 
represented. 

The exponential term contains the distance 
rij between the atoms i and j and the smoothing 
parameter B, which defines the probability 
distribution of the individual distances. g(r) 
was calculated at a number of discrete points 
with defined intervals The radial distribution 
function in this form meets all the requirements 
for 3D structure descriptors: it is independent 
of the number of atoms, i. e., the size of a 
molecule, it is unique regarding the three-
dimensional arrangement of the atoms, and 
it is invariant against translation and rotation 
of the entire molecule. Additionally, the RDF 
descriptors can be restricted to specific atom 
types or distance ranges to represent specific 
information in a certain three-dimensional 
structure space, e.g. to describe steric hindrance 
or structure/activity properties of a molecule. 
Finally, the RDF descriptors are interpretable 
by using simple rules sets, and thus it provides 
a possibility for conversion of the code back 
into the corresponding 3D structure. Besides 
information about interatomic distances in the 
entire molecule, the RDF descriptors provide 

further valuable information, e.g. about bond 
distances, ring types, planar and non-planar 
systems and atom types. By using different 
weighting schemes, which include atom types, 
electronegativity, atom mass or van der Waals 
radii, RDF can be adjusted to select among 
those atoms of molecule, which give rise to an 
important descriptor in deriving an appropriate 
QSAR (29-31). 

Final descriptor C005 is one of the Ghos–
Crippen atom-centred fragments related to the 
methyl group attached to any electronegative 
atom (O, N, S, P, Se, halogens) fragment. It gives 
information about the number of predefined 
structural features in the molecule. Based on 
the produced QSAR equation a high value of 
MATS4m, RDF105u, RDF075v, C-005 and 
RDF095u give a positive contribution to the 
IL-1 production inhibition. On the other hand, a 
high value of GATS 3v and Surface area give a 
negative contribution to the inhibition.

Model Validation
The IL-1β production inhibition predictability 

of the proposed model was evaluated by using 
the external set of 11 compounds (Table 1). The 
proposed QSAR model has all conditions to be 
considered as predictive models.

R2 
pred = 0.754 > 0.6

[(R2
pred - R0

2) ⁄ R2
pred] = -0.078 < 0.1

[(R2
pred – R0

r2 ⁄ (׳2
pred] = -0.061<0.1

rm2 = 0.595> 0.5
K= 0.83, K1.00=׳

This model was further validated by applying 
the Y-randomization test. Several random 
shuffles of the Y vector were performed. The 
low R2 (0.0 < R2 < 0.34) and Q2 (0.0 < Q2 < 
0.25) values indicate that the good results in our 
original model are not due to a chance correlation 
or structural dependency of the training set. 
The extrapolation method was applied to the 
compounds that constitute the test set. The 
results are presented in Table 1. None of the 11 
compounds fell outside from the domain of the 
model (warning leverage limit = 0.77).

The suggested method, according to the high 
predictive ability, could be a useful tool to the 
costly and time consuming experiments for 



 Sakhteman A et al. / IJPR (2017), 16 (2): 513-524

518

determining the IL-1 β production inhibitory 
activity of pyridazine derivatives. The method 
can also be used to the screen virtual compounds 
in order to identify derivatives with desired 
activity.

In silico screening
The in silico screening was applied to the 
design of new structures with potential IL-1 β 
production inhibitors according to the developed 
QSAR model. The role of the in silico screen 
was as a guide to the identification of the 
most promising new synthetic targets. For this 
purpose, first we selected potent inhibitors from 
data set (3, 4, 17, 22, 23, 24, 28, 31, 32, 33, 34, 35, 
36, 37) and retain the main scaffold (4-methoxy 
phenyl moiety) and change the heterocyclic 
core, aromatic moiety and connection between 
aromatic moiety and central heterocyclic core. 
The modifications incorporated in the virtual 
screening study were chosen based on their 
synthetic feasibility. The suggested structures 
were not involving the use of unusual ring 
fragments or functional groups that cannot 
be prepared using established protocols. The 
chemistry of 1,2,4-triazine was well understood 
and introducing practical modifications here 
was considered synthetically viable, the in 
silico screen began with the replacement of 

the pyridazine core by 1,2,4-triazine (Table 
3). The model tolerated the introduction of 
1,2,4-triazine since all those studied were within 
the domain of applicability. The compounds 49 
and 51 showed the best activity, 6.83 and 6.56, 
respectively. In some cases the activities lower 
and just one compound has higher activity 
than original compound. The next step was 
incorporated 1,2,4-triazine instead of pyridazine 
core in second series of compounds that the 
different substituted aromatic moiety connect 
to central heterocyclic by O or S atoms. This 
model tolerated and the activity was retained 
(Table 4.). 

The other modification was replacement 
connective atoms (S or O) to N, this modification 
gave structures that showed good activity and 
were within the models domain of applicability 
(Table 5) but introducing the second nitrogen 
to linker slightly lead to decrease of predicted 
activity and was clearly within the domain 
of applicability (Table 6). Interestingly, 
replacement of pyridazine to pyridine ring led 
to enhanced biological activity and comfortably 
within the domain of applicability (Table 7). 
The In silico study suggested that presence of 
heterocyclic ring containing nitrogen group was 
necessary for inhibition Il-1 β production and 
increasing number of nitrogen ring diminished 

Figure 1. The statistical parameters according to number of descriptors entered in model.
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Table 1. IL-1 β production inhibitory activity—observed and predicted using developed model.

N
N

O
R

MeO

OMe

N
N

XR

MeO

OMe

1-25 26-46

Compound R or XR pIC50 observed pIC50 predicted Leverage (limit= 0.77)

1 H 4.50 4.72

2 Bn 6.58 6.71* 0.25

3 4-FBn 6.82 6.80* 0.16

4 2,4-F2Bn 6.74 6.19

5 3,4-Cl2Bn 6.67 6.46

6 4-ClBn 6.27 5.49* 0.13

7 3,4-F2Bn 6.26 6.29

8 2,4-Cl2Bn 5.96 5.84

9 2,6-Cl2Bn 5.5 5.04* 0.23

10 2,4,6-Cl3Bn 5.02 5.35

11 Me 5.94 5.87

12 Et 6.21 5.70

13 iPr 5.88 5.93

14 cPr 5.09 5.44

15 cPrCH2 5.74 5.95

16 cPn 6.29 7.04* 0.28

17 cPnCH2 6.95 7.08

18 3-PyCH2 6.36 6.44* 0.20

19 4-PyCH2 6.28 6.21

20 2-PyCH2 5.83 6.54

21 Cinnamyl 6.21 6.59

22 2,4-F2Cinnamyl 7.00 6.70

23 4-ClCinnamyl 7.00 7.05

24 4-FCinnamyl 6.77 6.87* 0.11

25 2,4-ClCinnamyl 6.56 6.54

26 2,4-F2PhNH 5.71 5.96

27 2,4-F2PhNPr 5.50 5.37

28 3,4,5-Cl3PhS 6.99 7.09

29 2,4-F2PhS 5.73 4.84* 0.247
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30 PhS 4.69 4.53

31 2,3,4,5,6-F5PhO 7.39 7.07

32 PhO 7 6.86

33 2,3-F2PhO 6.92 7.04

34 2-CNPhO 6.82 6.40

35 3-CNPhO 6.79 6.94

36 2,5-F2PhO 6.74 6.16

37 2,3,5,6-F4PhO 6.72 6.77

38 2,6-F2PhO 6.45 6.20

39 4-MeOPhO 6.35 6.41

40 3,4-F2PhO 6.33 6.49* 0.07

41 4-NO2PhO 6.20 6.43

42 4-PyO 5.90 5.62

43 3,5-F2PhO 5.86 5.74* 0.11

44 2,4-F2PhO 5.63 5.85

45 3-NO2PhO 5.92 5.27* 0.31

46 2,4-Cl2PhO 5.59 5.91

*Selected as test set.

Table 1. (Continue).

Table 2. Correlation matrix for the eight selected descriptors.

MATS4m GATS3v RDF095u RDF100u RDF105u RDF075v C-005 Surface area VIF*

MATS4m 1 0.598 0.185 0.244 0.129 0.307 -0.273 0.480 3.785

GATS3v 1 0.064 0.143 0.242 0.379 -.005 0.214 3.143

RDF095u 1 0.612 0.511 0.235 -0.154 0.548 2.830

RDF100u 1 0.608 0.555 -0.209 0.614 2.719

RDF105u 1 0.639 -.099 0.585 2.744

RDF075v 1 -0.305 0.485 1.478

C-005 1 -0.132 2.389

Surface area 1 3.563

*VIF less than 10 demonstrates that the model contains no multicollinearity.

biological  activity.

Conclusion

In this study we have identified eight 
descriptors that successfully model the IL-1 β 
production inhibitory activity. The validation 

procedures utilized in this work (separation 
of data into independent training and 
validation sets, Y-randomization) illustrated 
the accuracy of produced QSAR model. 
Based on the developed QSAR model, we 
have designed novel structures that could be 
further investigated as novel effective IL-1 beta 
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Table 3. Predicted activities of selected 1,2,4-triazin-3(2H)-one derivatives.

ID Ar pIC50 predicted Leverage

47 4-FBn 6.42 0.182

48 2,4-F2Bn 5.65 0.167

49 cPnCH2 6.83 0.206

50 2,4-F2Cinnamyl 6.51 0.061

51 4-ClCinnamyl 6.56 0.142

52 4-FCinnamyl 6.41 0.103

Table 4. Predicted activities of selected 3-aryl 1,2,4-triazin derivatives.

ID XAr pIC50 predicted Leverage

53 3,4,5-Cl3PhS 6.96 0.307

54 2,3,4,5,6-F5PhO 6.80 0.150

55 PhO 6.93 0.182

56 2,3-F2PhO 6.75 0.055

57 2-CNPhO 6.10 0.037

58 3-CNPhO 6.71 0.100

59 2,5-F2PhO 5.86 0.094

60 2,3,5,6-F4PhO 6.48 0.107
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Table 5. Predicted activities of selected 3-amino 1,2,4-triazin derivatives.

ID XAr pIC50 predicted Leverage

61 3,4,5-Cl3PhNH 7.51 0.350

62 2,3,4,5,6-F5PhNH 6.67 0.120

63 PhNH 6.89 0.182

64 2,3-F2PhNH 6.72 0.055

65 2-CNPhNH 6.29 0.034

66 3-CNPhNH 6.90 0.101

67 2,5-F2PhNH 5.84 0.099

68 2,3,5,6-F4PhNH 6.36 0.103
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Table 6. Predicted activities of selected 3-benzylidenehydrazine 1,2,4-triazin derivatives.

ID XAr pIC50 predicted Leverage

69 3,4,5-Cl3Ph 7.24 0.384

70 2,3,4,5,6-F5Ph 6.06 0.212

71 Ph 6.32 0.146

72 2,3-F2Ph 5.44 0.242

73 2-CNPh 6.08 0.135

74 3-CNPh 6.09 0.194

75 2,5-F2Ph 5.66 0.197

76 2,3,5,6-F4Ph 5.18 0.442
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Table 7. Predicted activities of selected three aryl pyridine derivatives.

ID XAr pIC50 predicted Leverage

77 3,4,5-Cl3PhS 7.54 0.472

78 2,3,4,5,6-F5PhO 7.32 0.293

79 PhO 7.19 0.194

80 2,3-F2PhO 7.26 0.143

81 2-CNPhO 6.59 0.040

82 3-CNPhO 7.18 0.135

83 2,5-F2PhO 6.39 0.105

84 2,3,5,6-F4PhO 7.01 0.178
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78 2,3,4,5,6-F5PhO 7.32 0.293 
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83 2,5-F2PhO 6.39 0.105 

84 2,3,5,6-F4PhO 7.01 0.178 

 

 

production inhibitors. The proposed method, due 
to the high predictive ability, tenders a useful 
alternative to the costly and time consuming 
experiments for cytokine production inhibitory 
activity.
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