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Abstract

A series of structurally related 2,4-dioxopyrimidine-1-carboxamide derivatives as highly 
potent inhibitors against acid ceramidase were subjected to hologram quantitative structure-
activity relationship (HQSAR) analysis. A training set containing 24 compounds served 
to establish the HQSAR model. The best HQSAR model was generated using atoms, bond, 
connectivity, donor and acceptor as fragment distinction and 3–6 as fragment size with six 
components showing cross-validated q2 value of 0.834 and conventional r2 value of 0.965. The 
model was then employed to predict the potency of test set compounds that were excluded 
in the training set, and a good agreement between the experimental and predicted values was 
observed exhibiting the powerful predictable capability of this model ( 2

predr = 0.788 ). Atom 
contribution maps indicate that the electron-withdrawing effects at position 5 of the uracil ring, 
the preferential acyl substitution at N3 position and the substitution of eight-carbon alkyl chain 
length at N1 position predominantly contribute to the inhibitory activity. Based upon these key 
structural features derived from atom contribution maps, we have designed novel inhibitors of 
acid ceramidase possessing better inhibitory activity. 
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Introduction

Being essential structural elements of cell 
membranes, sphingosine-containing lipids serve 
significant signaling roles in the regulation of 
cell differentiation and growth, as well as in cell 
recognition, cell migration, and inflammation 
(1-3). The ceramides, a key member of the 
various groups of sphingolipids, have drawn 
particular attention for their functions in the 
replication and differentiation of tumor cells 
(4). The ceramide levels in some types of 

human tumors are much lower than in normal 
tissues, and the higher the ceramide levels, the 
lower the degree of malignant progression (5, 
6). Moreover, various stress-related signals 
stimulate the generation of ceramide, which 
can in turn motivate the apoptosis of cancer 
cells (5, 6). Therefore, different interventions 
in the metabolic pathways of ceramide should 
influence cancer development and therapy. 
For instance, the recently reported 3-hydroxy 
vinylboronates trigger apoptosis in Jurkat cells 
by regulating sphingolipid metabolism resulting 
in the increase of the percentage of ceramide 
(7). Particularly, enzyme pathways implicated 
in regulating intracellular ceramide levels might 
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emerge as potential new targets for antineoplastic 
therapy (8).

Acid ceramidase (AC) is a cysteine amidase 
that acts within the acidic conditions of the 
lysosome to hydrolyse ceramide into fatty acid 
and sphingosine (9). AC is not only associated 
with the control of ceramide levels in cells, but 
also regulates the ability of ceramide to affect 
the survival, growth and death of neoplastic 
cells (6-8). In line with this view, some types 
of human cancer (e.g. colon, head and neck, 
and prostate) express abnormally high levels 
of AC and serum AC levels are enhanced in 
melanoma patients compared with control 
subjects (10). Furthermore, over-expression 
of AC makes cells more resistant than normal 
cells to pharmacological induction of apoptosis, 
which is indicative of a role for this enzyme that 
inhibition of AC activity renders tumor cells 
more liable to the effects of chemotherapy and 
radiation (11, 12).

Despite the fact that several AC inhibitors, 
which can inhibit AC activity in-vitro, have 
been disclosed, potent compounds capable of 
inhibiting this enzyme in-vivo are still in demand, 
especially small-molecule compounds (13-15). 
The majority of AC inhibitors reported so far 
include oleoylethanolamide (OEA), D-MAPP, 
B-13, and their derivatives (16-21). Though 
useful experimentally, a common drawback 
of these inhibitors is that they are structurally 
related with ceramide, which leads to various 
limitations such as insufficient drug-likeness and 
inadequate activity in-vivo (8). For this reason, 
efforts have been made to discover new AC 
inhibitors with improved potency both in-vitro 
and in-vivo.

Recently, carmofur, which is employed to treat 
colorectal cancers in the clinic, were reported to 
be new AC inhibitors with nanomolar potency 
in-vivo (22). Further investigation demonstrated 
that carmofur can exert anti-proliferative effects 
because of the dominant inhibition of acid 
ceramidase. According to these findings, several 
derivatives, baesd on the chemical scaffold of 
carmofur, were synthesized and their inhibitory 
activity against acid ceramidase was also 
measured, leading to the discovery of new AC 
inhibitors (22, 23). Furthermore，preliminary 
structure−activity relationship (SAR) studies 

were also performed (23). However, rudimentary 
SAR studies often fail us to understand 
comprehensively the structural features 
required for the molecular biological activity, 
not to mention that SAR studies can be used to 
predict the biological activity of unsynthesized 
compounds. Thus, the findings obtained from 
SAR studies has some limitations with regard 
to providing guidelines for designing drug with 
enhanced biological activity.

Throughout recent years, fragment-based 
2D QSAR methods served as versatile tools in 
drug design, among which hologram QSAR has 
emerged as a powerful strategy to investigate the 
chemical and biological properties for various 
types of compounds (24). Therefore, with the 
goal of identifying more potent in-vivo small-
molecule inhibitors for acid ceramidase, we 
carried out hologram quantitative structure–
activity relationship study for the series of 
structurally related 2, 4-dioxopyrimidine-1-
carboxamide derivatives. On the basis of the 
HQSAR mode thus established, we attempted 
to elucidate a quantitative structure–activity 
relationship to provide useful guidelines for the 
design of more potent AC inhibitors.

Experimental

Data sets and Molecular modeling
The inhibitory activity of the 

2,4-dioxopyrimidine-1-carboxamide inhibitors 
of acid ceramidase (AC), which has been 
reported by Pizzirani et al. (23), was taken for 
the study ( Table 1). The biological data taken 
from the literature as IC50 value of AC inhibition 
was converted to the corresponding pIC50 (-log 
IC50) and used as dependent variable in HQSAR 
analysis. The pIC50 values span a range of 4 
log units, providing a broad and homogenous 
data set for the HQSAR study. Taking the 
structural diversities and wide range of activity 
into account, the compounds were divided 
randomly into training and test set. Meanwhile, 
a little care was taken in the selection of test set 
compounds, so that compounds in the training 
set were representative. Twenty-four of total 32 
compounds were included in the training set to 
derive the HQSAR model while the remaining 
eight compounds were used as test set to 
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validate the external predictability of the model. 
Molecular modeling studies were performed 
using the SYBYL 8.1.1 software package (Tripos, 

L.P., USA) running on a HP Z600 workstation. 
The molecular structures were sketched and 
minimized individually using Tripos force field. 

Compound R1 R2 n Observed pIC50 Predicted pIC50 Residual

1 F H 5  1.538 1.446 - 0.092

2 H H 5  0.371  0.037 - 0.334

3 CH3 H 5 - 0.164 - 0.198 - 0.034

4 Cl H 5  1.174  1.183  0.009

5 CF3 H 5  1.921  1.865 - 0.056

6 ethyl H 5  0.135  0.013 - 0.122

7t CH2OH H 5  0.380  0.265 - 0.115

8 OCH3 H 5 - 0.041 - 0.129 - 0.088

9 benzylmethylamino H 5 - 0.740 - 0.738  0.002

10 N-morpholino H 5  0.058  0.062  0.004

11t 4-methylpiperazinyl H 5 - 0.146 - 0.078  0.068

12 phenyl H 5  0.752  0.917  0.165

13 I H 5  0.833  0.875  0.042

14t Br H 5  1.292  1.005 - 0.287

15t methylamino H 5 - 0.532  0.273  0.805

16 F methyl 5  1.886  1.994  0.108

17t H methyl 5  1.276  0.774 - 0.502

18 F ethyl 5  1.745  1.922  0.177

19 F -CH2-cyclopropyl 5  1.215  1.527  0.312

20 F COisopropyl 5  1.678  1.307 - 0.371

21 F COOCH3 5  2.155  2.107 - 0.048

22 F COOCH2CH3 5  1.921  1.784 - 0.137

23t F COOisobutyl 5  1.796  2.059  0.263

24 F COPh 5  1.699  1.621 - 0.078

25 H H 3 - 0.929 - 0.314  0.615

26 H H 4 - 0.322 - 0.159  0.163

27 H H 6  0.488  0.204 - 0.284

28t F H 7  1.337  1.421  0.084

 29 H H 7  0.548  0.372 - 0.176

 30 CF3 H 7  2.155  2.200  0.045

 31t H H 8  0.334  0.222 - 0.112

 32 F COOCH3 7  2.398  2.442  0.044
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Table 1. Chemical structures, experimental and predicted activities, and residuals of compounds included in the training set and test set. 

t test set compounds



Yang X-L et al. / IJPR (2016), 15 (Special issue): 139-148

142

The minimum energy difference of 0.005 kcal/
mol was set as a convergence criterion. 

Hologram QSAR method
Hologram QSAR is a modern QSAR 

technique developed from unity hashed 
fingerprint concept, which employs specialized 
fragment finger prints as predictive variables of 
biological activity (25). Compared with other 
existing methods for QSAR, HQSAR avoids not 
only the need for 3D structure, putative binding 
conformations, and molecular alignment in 
CoMFA (26) and CoMSIA (27), but also the 
selection and calculation or measurement of 
the physicochemical descriptors required by 
classical QSAR. HQSAR analysis involves 
three main steps: the generation of substructural 
fragments for each of the molecules in the 
training set; the encoding of these fragments 
into holograms; and correlation of molecular 
hologram with the available biological activity.

During hologram generation, the input 
molecule is broken into a series of unique 
structural fragments (linear, branched and 
overlapping) containing user-defined minimum 
and maximum number of atoms. According 
to a predefined set of rules that encodes the 
frequency of occurrence of various types of 
molecular fragment, the hashed fingerprint 
is obtained. Then, this hashed fingerprint 
is divided into strings at a fixed interval 
as determined by a hologram length (HL) 
parameter. The strings are then aligned and the 
sum of each column constitutes the individual 
component of the molecular hologram of a 
particular length. 

A number of parameters concerning hologram 
generation, such as hologram length, fragment 
size and fragment distinction, prevailingly affect 
the HQSAR model quality (25). In order to 
derive the best HQSAR model, it is necessary 
to discuss the effects of various combinations of 
parameters on the HQSAR model. All models 
generated in these studies were evaluated using 
full cross-validated q2, partial least squares 
(PLS) and leave-one-out (LOO) method.

Predictive correlation coefficient (r 2
pred)

The predictive ability of the HQSAR models 
was evaluated with predictive correlation 
coefficient (r 2

pred ) defined by Equation (1):

r 2
pred = (SD-PRESS)/SD    Equation (1)

Where SD is the sum of squared deviations 
between the biological activity of the test set 
compounds and the mean activity of the training 
set molecules, and the PRESS is the sum of 
squared deviations between predicted and 
observed activity values for every molecule in 
the test set.

Results and Discussion
HQSAR analysis for the effect of various 

fragment distinction combinations on the model 
quality

For the sake of reducing the chances of bad 
collisions, the defaults of the hologram lengths 
are set automatically by software as several 
prime numbers, such as 53, 59, 61, 71, 83, 97, 
151, 199, 257, 307, 353 and 401. Employing 
these prime numbers as hologram lengths, 
several combinations of these parameters were 
considered using the fragment size default (4–7) 
as follows: A/B, A/B/C, A/B/C/H, A/B/H, A/B/
DA, A/B/C/DA, A/B/H/DA, A/B/C/H/DA. The 
fragment distinction parameters are described as 
follows: A, atoms; B, bonds; C, connections; H, 
hydrogen atoms; DA, donor and acceptor. Due 
to the lack of chiral carbon atom of all the 32 
molecules, the fragment distinction of chirality 
was not discussed in Table 2. 

From what has been demonstrated in Table 
2, we can obviously see that the best statistical 
model was derived using atoms, bonds, 
connections, donor and acceptor as fragment 
distinction with 6 being the optimum number 
of PLS components showing cross-validated 
q2 value of 0.824 and conventional r2 value of 
0.946. 

It is interesting to note that the statistical 
parameters in model 1 are equivalent to that 
in model 4 and the statistical parameters in 
model 2 are the same as that in model 3. The 
same phenomenon is observed between model 
5 and model 7. Furthermore, there is not distinct 
difference in the statistical parameters between 
model 6 and model 8. Contrasting and analyzing 
the models mentioned above, we found one 
common feature that the latter model took into 
consideration an additional fragment distinction 
parameter, namely, hydrogen atoms, compared 
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with the former model. In other words, the 
additional selection of hydrogen flag would do 
no good in ameliorating the model quality. In 
addition, obviously, the quality of model 1 that 
factored in atoms (A) and bonds (B) is relatively 
satisfactory. However, the additional selection 
of connections (C) or donor and acceptor (DA) 
led to a decrease in model quality, which can be 
verified from the statistical parameters of model 
2 and model 5. Remarkably, the simultaneous 
introduction of connections (C) and donor 
and acceptor (DA) during the model building 
process on the basis of model 1 resulted in the 
best model (model 6), which may be due to the 
fact that C and DA played a synergetic role in 
enhancing the model quality. The synergistic 
action of connections (C) combined with 
donor and acceptor (DA) was also embodied 
between model 2 and model 6. Taken together, 
the important role of C and DA involved in 
developing the HQSAR model is indicative 
of the possibility that connections and donor 
and acceptor complement each other for the 
inhibitor-enzyme interaction, which should be 
still verified by experiment in future.

HQSAR analysis for the influence of various 
fragment size on model quality

Based on the best HQSAR model generated 
above (model 6, Table 2), the influence of 
different fragment sizes on statistical parameters 
was further investigated and summarized in 
Table 3. As can be seen from Table 3, the r2 
values of all models are greater than 0.89, and 

the q2 values are also satisfactory. The results 
shown in bold fonts in table 3 indicated that 
the fragment size (3-6) led to better statistical 
results in comparison with other fragment sizes. 
Therefore, the best final HQSAR model obtained 
from training set with 24 compounds was 
established using atoms, bonds, connections, 
donor and acceptor as fragment distinction and 
3-6 as fragment size with 6 being the optimum 
number of PLS components showing cross-
validated q2 value of 0.834 and conventional r2 
value of 0.965.

The evaluation of HQSAR model quality
Since the structure encoded within a 2D 

fingerprint is directly related to biological 
activity of molecules, the HQSAR model is 
able to predict the activity of structurally related 
molecules according to its fingerprint. In virtue 
of the finally accepted QSAR model showing 
non-cross-validated (r2=0.965) and cross-
validated (q2=0.834) correlation coefficients, 
which manifested a good internally predictive 
power, the predicted pIC50 values of both test 
set and training set compounds are listed in 
Table 1. Furthermore, the graphic results for the 
experimental versus predicted activities of both 
training set and test set are displayed in Figure 
1. The constructed HQSAR model has good 
agreement between experimental and predicted 
values for the test set compounds with the higher 
predictive correlation coefficient (r 2

pred = 0.788), 
which signified a high external predictability of 
model. As far as the satisfactory performance of 

Model Fragment distinction r2 SEE q2 SEP HL N

1 A/B 0.950 0.248 0.770 0.536 307 5

2 A/B/C 0.865 0.388 0.711 0.569 83 3

3 A/B/C/H 0.865 0.388 0.711 0.569 83 3

4 A/B/H 0.950 0.248 0.770 0.536 307 5

5 A/B/DA 0.914 0.318 0.767 0.524 353 4

6 A/B/C/DA 0.946 0.267 0.824 0.481 257 6

7 A/B/H/DA 0.914 0.318 0.767 0.524 353 4

8 A/B/C/H/DA 0.946 0.267 0.824 0.481 257 6

Table 2. HQSAR analysis for the effect of various fragment distinction combinations on the key statistical parameters using default 
fragment size (4-7).  

q2, cross-validated correlation coefficient; SEP, cross-validated standard error; r2, noncross-validated correlation coefficient; SEE, non 
cross-validated standard error; HL, hologram length; N, optimal number of components. Fragment distinction: A, atoms; B, bonds; C, 
connections; H, hydrogen atoms; DA, donor and acceptor.
The model chosen for analysis is highlighted in bold fonts.
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Fragment size r2 SEE q2 SEP HL N

1-3 0.892 0.348 0.725 0.555 401 3

4-7 0.946 0.267 0.824 0.481 257 6

3-10 0.933 0.298 0.721 0.606 353 6

1-4 0.912 0.315 0.781 0.495 83 3

2-5 0.934 0.272 0.807 0.466 151 3

3-6 0.965 0.214 0.834 0.468 257 6

5-8 0.939 0.283 0.762 0.560 353 6

6-9 0.934 0.295 0.740 0.585 353 6

7-10 0.927 0.309 0.736 0.589 353 6

Table 3.  HQSAR analysis for the influence of various fragment size using the best fragment distinction (A/B/C/DA). The model chosen 
for analysis is highlighted in bold fonts.

this holographic QSAR is considered, the model 
can be used to predict the biological activity of 
novel compounds within this structural class. 

Interpretation of HQSAR contribution map
A significant role of a QSAR model is 

not only to predict the activities of untested 
molecules, but also to throw light on what 
molecular fragments play key roles to the 
contribution of biological activity. The results 
of the HQSAR analysis is graphically displayed 
as a color-coded structure diagram in which 
the color of each atom reflects the contribution 
of that atom to the molecule’s overall activity. 
The colors at the red end of the spectrum (red 
and orange) represent poor contributions, while 

experimental versus predicted activities of both training set and test set are displayed in Figure 1. The constructed HQSAR model has 

good agreement between experimental and predicted values for the test set compounds with the higher predictive correlation coefficient 

( 2r pred = 0.788), which signified a high external predictability of model. As far as the satisfactory performance of this holographic QSAR 

is considered, the model can be used to predict the biological activity of novel compounds within this structural class.   

 

 

 

 

 

 

 

 

Figure 1. Plot of experimental versus predicted pIC50 values of the training set and test set molecules. 

The training set and test set molecules are shown in black (squares) and red (triangle) spots, respectively. 

Interpretation of HQSAR contribution map 

A significant role of a QSAR model is not only to predict the activities of untested molecules, but also to throw light on what 

molecular fragments play key roles to the contribution of biological activity. The results of the HQSAR analysis is graphically displayed 

as a color-coded structure diagram in which the color of each atom reflects the contribution of that atom to the molecule’s overall activity. 

The colors at the red end of the spectrum (red and orange) represent poor contributions, while colors at the green end (yellow, blue and 

green) indicate favorable contributions. HQSAR offers a good way of accounting for the variance of molecular activity by condensing 

information on the structural fragment.  

Using the best HQSAR model, which factored atoms, bonds, connections; donor and acceptor into fragment distinction parameters, 

the atomic contribution maps of 24 compounds included in the training set were generated. The individual atomic contribution maps of 

the first single-digit potent nanomolar acid ceramidase inhibitors（compound 32, 30 and 21）as well as the least potent AC inhibitor 

(compound 25), resulting from the best HQSAR model, are displayed in Figure 2. As known to us, the different substituents with various 

chemical properties attached to the 2,4-dioxopyrimidine-1-carboxamide scaffold incurred different responses to the inhibition of AC 

activity，which is especially embodied at the position N3 and N5 of the uracil ring in addition to the alkyl side chain at N1 position (23). 

First of all, it can be seen obviously from Figure 2 that the individual atomic contribution map of compound 25 is colored white 

totally because it serves as the common structure that exists in every studied molecule.  

With respect to the impact of R1 substituent on the inhibition of AC, the fluorine atoms tethered to the position N5 of the uracil ring 

both in the compound 32 and 21 were colored green and yellow respectively, indicating its positive contribution to inhibitory activity, 

which explained well why compounds 1, 16, 28 have higher potency than compounds 2, 17, 29. Furthermore, the trifluoromethyl group 

in the same place (compound 30) was colored heavily green, signifying its highly beneficial contribution to inhibitory activity, which is a 

possible reason why compound 30 has higher potency than compound 29. In consideration of the preeminent role of the fluorine atom 

and the trifluoromethyl group at N5 position of the uracil ring, it can be deduced that the introduction of electron-withdrawing group will 

play a crucial role in improving the inhibitory activity of this class of compounds, which was borne in mind in our follow-up molecular 

design. This conclusion is also consistent with previous SAR studies, which reinforced the importance of electron-withdrawing effect in 

enhancing the AC inhibitory activity (23). On the other hand, in combination with the above-mentioned analysis about the role of 

connections (C) and donor and acceptor (DA) in developing the HQSAR model, we come up with the presumption that the 
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Figure 1. Plot of experimental versus predicted pIC50 values of the training set and test set molecules.
The training set and test set molecules are shown in black (squares) and red (triangle) spots, respectively.

colors at the green end (yellow, blue and green) 
indicate favorable contributions. HQSAR offers 
a good way of accounting for the variance of 
molecular activity by condensing information 
on the structural fragment. 

Using the best HQSAR model, which 
factored atoms, bonds, connections; donor and 
acceptor into fragment distinction parameters, 
the atomic contribution maps of 24 compounds 
included in the training set were generated. The 
individual atomic contribution maps of the first 
single-digit potent nanomolar acid ceramidase 
inhibitors (compound 32, 30 and 21) as well 
as the least potent AC inhibitor (compound 
25), resulting from the best HQSAR model, 
are displayed in Figure 2. As known to us, the 
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different substituents with various chemical 
properties attached to the 2,4-dioxopyrimidine-
1-carboxamide scaffold incurred different 
responses to the inhibition of AC activity, which 
is especially embodied at the position N3 and 
N5 of the uracil ring in addition to the alkyl side 
chain at N1 position (23).

First of all, it can be seen obviously from 
Figure 2 that the individual atomic contribution 
map of compound 25 is colored white totally 
because it serves as the common structure that 
exists in every studied molecule. 

With respect to the impact of R1 substituent 
on the inhibition of AC, the fluorine atoms 
tethered to the position N5 of the uracil ring 
both in the compound 32 and 21 were colored 
green and yellow respectively, indicating its 
positive contribution to inhibitory activity, 
which explained well why compounds 1, 16, 
28 have higher potency than compounds 2, 17, 
29. Furthermore, the trifluoromethyl group in 
the same place (compound 30) was colored 
heavily green, signifying its highly beneficial 
contribution to inhibitory activity, which is a 
possible reason why compound 30 has higher 
potency than compound 29. In consideration of 
the preeminent role of the fluorine atom and the 
trifluoromethyl group at N5 position of the uracil 
ring, it can be deduced that the introduction of 
electron-withdrawing group will play a crucial 
role in improving the inhibitory activity of 
this class of compounds, which was borne in 
mind in our follow-up molecular design. This 
conclusion is also consistent with previous 
SAR studies, which reinforced the importance 
of electron-withdrawing effect in enhancing the 
AC inhibitory activity (23). On the other hand, in 
combination with the above-mentioned analysis 
about the role of connections (C) and donor 
and acceptor (DA) in developing the HQSAR 
model, we come up with the presumption that the 
electron-withdrawing group (R1) such as fluorine 
atom or trifluoromethyl may act as hydrogen bond 
acceptor for the inhibitor-enzyme interaction, as 
proposed in the discussion about Table1.

As regards the influence of alkyl chain length 
on the inhibition activity of AC, the carbon 
atoms at the tip of the chain in compound 32 
and compound 30 were colored yellow or 
green while the terminal atoms in compound 21 

and compound 25 were colored white, which 
provided a hint that compounds bearing eight-
carbon alkyl chain exhibits higher AC inhibition 
activity than compounds with other alkyl chain 
length. In other words, eight-carbon alkyl chain 
length is superior to other alkyl chain length for 
improving the AC inhibition activity, as also 
evidenced by the higher predicted pIC50 values 
of the designed molecules (E) compared with 
compounds (C and D), which may be the very 
reason why compound 32 possesses higher AC 
inhibition activity than compound 21.

In addition, of particular interest was the 
green color of the 1-carboxamide NH group 
in compound 30, implying its favorable 
contribution to the AC inhibition activity, which 
also shed light on the key role of 1-carboxamide 
NH moiety essential for the AC inhibition 
activity of this class of compounds (23). 

Furthermore, what interested us was that 
the oxygen atoms or carbon-oxygen double 
bond located at position 4 of the uracil ring 
were all colored green in compounds 32, 30, 
21. Although these fragments are a part of the 
common structure incorporated in all the studied 
molecules, they seemed to provide some hints 
about the key function of a fully conjugated 
2,4-dioxopyrimidine-1-carboxamide system, as 
verified by the computational studies (23). On 
the other hand, the oxygen atoms may function 
as hydrogen bond acceptor for the inhibitor-
enzyme interaction, as put forward in the analysis 
for Table 1, which is a hypothesis needing to be 
confirmed in further investigation.

Designed compounds and predicted activity
In terms of the information derived from 

these contribution maps together with the 
analysis thus made above, we further modified 
the structure of 2,4-dioxopyrimidine-1-
carboxamide acid ceramidase inhibitors. The 
structures of new compounds with potentially 
improved biological activity were displayed 
in Figure 3. Taking advantage of the best 
holographic QSAR model established above, the 
activities of the new compounds thus designed 
were predicted, as shown in Table 4. According 
to the prediction results, the biological activities 
(pIC50) of new compounds were all greater than 
2.4. These new compounds are likely to possess 
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higher inhibitory activity, which remains to be 
experimentally verified.

Conclusions

In summary, we successfully generated 
a hologram QSAR model for the 
2,4-dioxopyrimidine-1-carboxamides as acid 
ceramidase inhibitors with good statistical 

results. The model (N= 6) displayed significant 
cross-validated (q2= 0.834) and non-cross-
validated correlation coefficients (r2= 0.965). 
The strong agreement between the experimental 
and predicted values for the test set compounds 
verified the reliability and robustness of the 
constructed HQSAR model, indicating a high 
external predictability of model (r 2

pred = 0.788). 
The contribution of the structural fragment to the 

Figure 2. Atomic contribution maps for compounds 32, 30, 21 and compound 25.

Compound R1 R2 n Predicted pIC50

D1 CF3 CH3 7 2.571

D2 CF3 COOCH3 7 2.867

D3 CF3 COOCH2CH3 6 2.573

D4 CF3 COOCH2CH3 5 2.446

D5 CF3 COOCH2CH3 7 2.7

D6 CF3 CH2CH3 7 2.413

Table 4. Chemical structures of designed molecules and predicted biological activities.

Figure 2. Atomic contribution maps for compounds 32, 30, 21 and compound 25. 

Designed compounds and predicted activity 
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biological activity of this series of compounds 
was interpreted by the HQSAR contribution 
maps. Atom contribution maps suggested that 
the electron-withdrawing effects at position 5 of 
the uracil ring, the preferential acyl substitution 
at position N3 and the eight-carbon alkyl chain 
length at N1 position dominantly increased 
the inhibitory activity. Finally, based on the 
findings mentioned above, we have designed 
novel inhibitors of acid ceramidase possessing 
better inhibitory activity. Therefore, the HQSAR 
model can provide guidelines for future efforts 
in the design of new more active AC inhibitors 
that are structurally related with the training set 
compounds.
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