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Abstract

A series of curcumin derivatives containing heterocyclic moiety have been synthesized 
and evaluated for their antibacterial activities. The chemical structures of the synthesized 
compounds were verified on the basis of spectral data and elemental analyses. Investigation 
of antimicrobial activity of the derivatives demonstrated the ability to inhibit Gram-positive 
microorganisms with zone of inhibition ranging from 14-18 mm, MIC ranging between 0.0625 
and 0.25 mg/mL. Among all tested derivatives, diazepine 4 exhibited remarkable potency 
against Gram-positive bacteria S. aureus. An extensive study is underway to optimize the 
effectiveness of diazepine type of compounds and to determine their mode of action.
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Introduction

Bacterial resistance to many available 
antibacterial agents is a growing problem. 
Accordingly, the development of new 
antibacterial agents that could overcome the 
resistance problem has become the subject of 
an ongoing research (1-6). In the present work, 
we have employed curcumin as a naturally 
occurring skeleton for the construction of 
heterocyclic systems such as pyrazole, isoxazole, 
and diazepine which might exhibit promising 
antibacterial activity.

Curcumin, (E,E)-l,7-bis(4-hydroxy-3-
methoxyphenyl)-l,6-heptadiene-3,5- dione, also 
known as turmeric yellow, is a natural yellow 
pigment derived from the roots of curcuma 
plants, e.g. C. tinctoria, C. xanthorrhiza and C. 

domestica, and is known since several hundred 
years. It is used as a food coloring agent and 
in traditional Indian medicine for treatment of 
various diseases that include biliary disorders, 
anorexia, cough, diabetic wounds, hepatic 
disorder, rheumatism, blood purification and 
rheumatoid arthritis (7-10).

Several studies have shown that curcumin 
has various pharmacological activities including 
potent antioxidant, anti-inflammatory and 
antiviral activities (11-16), as well as anticancer 
activities against different forms of cancer, e.g., 
cervical cancer caused by HPV (17-19). In 
addition, other studies have shown that curcumin 
represents a hopeful approach for delaying 
or preventing the progression of Alzheimer›s 
disease (20-24), and has been identified as an 
inhibitor of HIV-1 LTR directed gene expression 
and viral replication, besides its ability to block 
HIV replication by inhibiting HIV-integrase and 
protease (25-30).
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methoxystyryl)-1H-pyrazole (2b). Similar yields 
were obtained using either acetic acid or PPA 
as a solvent. Purification of the products was 
performed using flash chromatography. Purified 
products were analyzed by various analytical 
and spectroscopic techniques, such as: melting 
point, LC/MS, 1H and 13C NMR, and elemental 
analysis. In all cases, results are consistent with 
the expected structures. All compounds were 
obtained in acceptable yield (65 % to 90%).

The structures and the characterization data 
for the prepared compounds are summarized in 
Figure 1 and the experimental part, respectively. 
Another set of curcumin-based heterocycles 
was prepared by reacting curcumin with 
various amines such as ethylenediamine and 
hydroxylamine. Compound 5 was prepared 
from reacting curcumin with n-butylamine; it 
was added to the set of evaluated derivatives 
for a comparison purpose. The structures and 
the characterization data for these compounds 
are also summarized in Figure 1 and the 
experimental part, respectively.

Antibacterial activity
The in-vitro antimicrobial activity was 

performed on four types of bacteria strains: 
S. aureus, E. coli, Proteus mirabilis and 
Pseudomonas aeruginosa using a disk diffusion 
assay reported in the literature by Perez et al. 
(55). All strains were isolated from patients 

Heterocyclic compounds, in general, are 
very important class of organic compounds 
with various bioactivities ranging from 
antibacterial to anticancer (31-47). For example, 
diazepines and benzodiazepines have various 
therapeutic applications. Many members 
of the diazepine family are widely used as 
anticonvulsants, anti-anxiolytics, analgesics, 
sedatives, antidepressants and hypnotic agents                         
(48-51). These literature findings have led us 
to synthesize the proposed group of curcumin-
based heterocycles and screen them against 
representative panel of Gram-positive and 
Gram-negative bacteria.

Results and Discussion

Compounds used in this study were prepared 
following a literature procedure with minor 
modification (52-54). In this procedure, curcumin 
(compound 1) was refluxed with various 
hydrazines in acidic media, which performs dual 
function as catalyst and solvent. Acid used for 
this purpose was either glacial acetic acid or 
polyphosphoric acid. The progress of the reaction 
was monitored by TLC. Some reactions required 
more reflux time than the others. Followed 
procedure produced only the expected product; 
some starting materials were also observed in 
some reactions, as in the case of synthesis of 
1-(2,4-dinitrophenyl)-3,5-bis-2-(4-hydroxy-3-
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Figure 1. Curcumin based pyrazoles prepared form reacting curcumin with various hydrazines.
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suffering from bacterial infections with the 
relevant bacteria. Ampicillin, Methicillin, 
and Carbenicillin were used as references of 
antibacterial compounds in antimicrobial assay.

Screening results
The results of the prepared compounds (2a-

e, 3, 4, 5) and the references for preliminary 
antibacterial testing are shown in Table 1. Results 
revealed that the majority of the synthesized 
compounds showed varying degree of inhibition 
against the tested microorganisms. In general, 
the potency against Gram-positive organisms 
is greater than against Gram-negative ones. 
As shown in Table 1, curcumin and all other 
derivatives were inactive (zones of inhibition were 
zero) against Proteus mirabilis and Pseudomonas 
aeruginosa. However, some compounds showed 
potency against E. coli, and some others like 
curcumin, compounds 4, and compound 5 were 
totally inactive against E. coli. Compound 2b 
showed the highest activity against E. coli (zone 
of inhibition is about 13 mm).

All prepared curcumin-based heterocycles 
have shown to be susceptible to excellent 
potency against Gram-positive bacteria S. 
aureus with zone of inhibition ranges from 11 
mm to 27 mm. The results were comparable to 
those of the reference antibiotics Methicillin, 
and Carbenicillin. Compound 4, showed 
remarkable activity against S. aureus with zone 

of inhibition of about 27 mm and its effect is 
about two-fold more than that of some other 
derivatives. Compound 4 showed even higher 
potency against S. aureus than Ampicillin 
(Table 1). Curcumin-based heterocycles then 
subjected to minimum inhibition concentration 
(MIC) testing. Results on S. aureus bacteria 
are summarized in Tables 2 and 3. As shown 
in Table 2, MIC of curcumin was 1 mg/mL, 
which is at least four-fold higher than the MIC 
of the other curcumin derivatives. Compounds 
2a, 2b and 3 showed MIC of about 0.25 mg\
mL. Derivatives 2c, 2d, 2e, and 5 showed lower 
MIC (about 0.0625 mg/mL). These results 
indicate that compounds 2c, 2d, 2e, and 5 have 
higher activities than compounds 1, 3, and 5. 
However, the highest activity was shown by 
derivative 4 as it showed a MIC of 1.9 μg mL-1.

The minimum concentration of each 
curcumin derivatives that results in a total 
inhibition of bacterial growth (MBC) was also 
determined. Compound 4 showed the highest 
activity. MBC for compound 4 was 0.0075 
mg\mL. These results indicate that compound 
4 has the highest potency against S. aureus, 
which may be attributed to the presence of 
1,4-diazepine ring. However, compound 5 that 
lacks heterocyclic system showed the least 
potency against S. aureus and no activity against 
E-Coli, which is similar to that of curcumin. 
These results indicate that the improved potency 

Compound Gram-positive Bacteria S. aureus
Gram-negative Bacteria

P. mirabilis E. coli P. aeruginosa

Curcumin (1) 11 0 0 0

Ampicillin 25 21 18 NTa

Methicillin 16 NTa NTa NTa

Carbenicillin 15 22 23 20

2a 11 0 11 0

2b 14 0w 13 0

2c 16 0 10 0

2d 15 0 12 0

2e 18 0 12 0

3 16 0 12 0

4 27 0 0 0

5 11 0 0 0

Table 1. Zone of Inhibition of Curcumin and Synthesized Curcumin-Based Heterocycles.
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of the prepared compounds could be attributed 
to the heterocyclic part of the curcumin-based 
heterocycles.

Conclusion

We have synthesized series of curcumin-
based heterocycles and evaluated their 
antibacterial activities against Gram-positive 
and Gram-negative bacteria. The molecules 
2b-e and 3 effectively inhibit S. aureus, with 
zone of inhibition ranging from 14 to 18 mm, 
MIC ranging between 0.0625 and 0.25 mg/
mL. Among the prepared derivatives, diazepine 
(4) showed the highest potency against Gram-
positive bacteria S. aureus. In conclusion, 
more extensive study is needed to optimize the 
effectiveness of diazepine type of compounds 
and to determine their mode of action. This 
could be accomplished by preparing a variety 
of curcumin-based diazepine hybrids and screen 
their antibacterial activities.

Experimental

General experimental
All chemicals were purchased from 

Aldrich Chemical Company and used without 
any further purification unless otherwise 
specified. All prepared compounds were 
characterized by 1H-NMR, 13C-NMR, IR 
spectroscopy, elemental analysis, and melting 
point. Nuclear Magnetic Resonance spectra 
were recorded on Varian Gemini 2000, 300 
MHz instrument and on Bruker DPX-300 
MHz instruments. Infrared spectra were 
recorded in KBr on a Shimadzu 820 PC FT-IR 
spectrometer. All 1H-NMR experiments were 
reported in δ units, parts per million (ppm) 
downfield from tetramethylsilane (TMS). 
All 13C-NMR spectra were reported in ppm 
relative to deuterochloroform (77.0 ppm). All 
melting points were determined in an open 
capillary tube and are uncorrected. At least 
two measurements were carried out for each 
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Figure 2. Curcumin based isoxazoles, diazepine, and amine prepared form reacting curcumin with various amines.
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compound. Elemental analyses were carried 
out with Elementar Vario EL III elemental 
analyzer. TLC analysis was performed on silica 
gel plates pre-coated with Merck Kieselgel 60 
F254 and visualization was done using UV 
lamp. Sample purifications were performed 
using flash chromatography with silica gel 
(100-200) mesh.

General Procedure
Preparation of curcumin-based heterocyclic 

compounds
The general experimental procedure for the 

preparation of compounds shown in Figure 1 was 
as follows: In a round bottom flask equipped with 
magnetic stirring bar and a condenser, curcumin 
(1.5 mmole, 0.5 g) was dissolved in acetic acid (or 
polyphosphoric acid (PPA)) (8 mL). The desired 
hydrazine (1.5 mmole) or amine was added to 
the solution of curcumin in acid. The produced 
solution was refluxed for 6-12 h. The progress 
of the reaction was monitored by TLC. After 
complete conversion, the mixture was cooled to 
room temperature and concentrated in-vacuo and 
redissolved in ethyl acetate (150 mL). The ethyl 
acetate layer was washed with saturated solution 
of NaHCO

3 and saturated solution of NaCl, 
dried over Na

2
SO

4
 and concentrated in-vacuo. 

The produced solid was collected by suction 

filtration and purified by flash chromatography 
(hexane : EtOAC (6 : 4)). In case where PPA was 
used, reaction mixture was diluted with water, 
extracted with ethyl acetate and then the product 
was purified as shown before.

1 - p h e n y l - 3 , 5 - b i s - 2 - ( 4 - h y d ro x y - 3 -
methoxystyryl)-1H-pyrazole (2a)

Curcumin (1.5 mmole, 0.5 g) was dissolved 
in glacial acetic acid (8.0 mL) and then, phenyl 
hydrazine hydrochloride (1.5 mmole, 0.25 g) 
was added. Produced solution was refluxed for 
about 6 h. Yield 71.6% (0.48 g), mp 127-129°C, 
IR (KBr ): vmax cm-1 3600 (-C-OH), 3350 
(–C–NH), 3100, 1620 (-C=N), 1600, and 1080 
(C-O ether) of (–O-CH3). 1H-NMR (300 MHz, 
CDCl3) δ ppm: 3.90 (s, 6H, OCH3), 6.05 (s, 2H, 
OH), 6.80 (s, 1H, C4-H), 7.02 (d, 2H, J = 14.8 Hz, 
C2-H and, C6-H), 7.10 (d, 2H, J = 14.8 Hz, C1-H 
and C7-H), 7.15–7.32 (m, 8H, Ar-H), 7.45 (m, 
2H, Ar-H), 7.72 (m, 1H, Ar-H). 13C NMR (300 
MHz, CDCl3) δ ppm: (300 MHz, CDCl3): 56.05, 
56.09, 101.22, 110.02, 110.98, 112.57, 115.97, 
116.14, 117.64, 120.67, 125.24, 128.17, 128.29, 
128.84, 129.02, 129.06, 129.08, 131.22, 133.34, 
139.72, 142.82, 147.20, 147.74, 148.2, 148.33, 
151.54, 161.00. Anal. Calcd for C27H24N2O4: 
C 73.62, H 5.49, N 6.36. Found: C 73.43, H 5.42, 
N 6.48.

Conc.(μg/mL) Curcumin 2a 2b 2c 2d 2e 3 4 5

4 x 103 - - - - - - - - -

2 x 103 - - - - - - - - -

1 x 103 - - - - - - - - -

500 + - - - - - - - -

250 + - - - - - - - -

125 + + + - - - + - -

62.5 + + + - - - + - -

31.25 + + + + + + + - +

15.625 + + + + + + + - +

7.8125 + + + + + + + - +

3.9062 + + + + + + + - +

1.953125 + + + + + + + - +

0.976563 + + + + + + + + +

Positive control + + + + + + + + +

Sterility control - - - - - - - - -

Table 2. MIC of curcumin and synthesized Curcumin-Based Heterocycles on S. aureus Bacteria.



Hamed O et al. / IJPR (2013), 12 (1): 47-56 

52

1-(2,4-dinitrophenyl)-3,5-bis-2-(4-hydroxy-
3-methoxystyryl)-1H-pyrazole (2b)

Curcumin (1.5 mmole, 0.5 g) was dissolved in 
glacial acetic acid (8.0 mL), and to it was added 
2,4-dinitrophenyl hydrazine hydrochloride 
(1.5 mmole, 0.355 g). Produced solution was 
refluxed for about 12 h (Yield 55 (0.43 g), mp 
192-195°C).

IR: vmax cm-1 3610 (-C-OH), 3050, 1635, 
(-C=N), 1590, 1080 (C-O ether), 1520, 1350.

1H-NMR (300 MHz, CDCl3) δ ppm: 3.78 (s, 
3H, OCH3), 3.80 (s, 3H, OCH3), 6.16 (s, 2H, 
OH),

6.80 (s, 1H, C-4H), 6.83 (m, 4H, C1-H, 
C2-H, C6-H, and, C7-H), 6.90 (m, 1H, Ar-
H), 7.10 (d, 2H, Ar-H), 7.20 (d, 2H, Ar-H), 
7.40 (d, 1H, Ar-H), 8.00 (d, 1 H, J = 9.43 Hz, 
Ar-H containing NO2), 8.43 (dd, 1H, J = 2.64 
Hz, 9.43 Hz, Ar-H containing NO2), 8.90 
(d, 1H, J = 2.64 Hz, Ar-H containing NO2). 
13C NMR (300 MHz, CDCl3) δ ppm: 56.15, 
56.23, 102.07, 110.00, 110.94, 111.28, 111.72, 
116.11, 116.89, 121.59, 121.86, 123.63, 126, 
83, 127.91, 128.43, 128.92, 130.23, 133.07, 
135.18, 135.69, 147.16, 144.89, 145.48, 
146.23, 148.23, 148.42, 154.02. Anal. Calcd 
for C27H22N4O8: C 61.13, H 4.18, N 10.56. 
Found: C 61.59, H 4.32, N 10.66.

1-(2-pyridyl)-3,5-bis-2-(4-hydroxy-3-
methoxystyryl)-1H-pyrazole (2c)

Curcumin (1.5 mmole, 0.5 g) was dissolved 
in glacial acetic acid (8.0 mL), to it was added 
2-hydrazinopyridin (1.5 mmole, 0.164 g). 
Produced solution was refluxed for 12 h. Yield 
89.5 (0.6 g), mp 122-125°C IR: vmax cm-1 
3550 (-C-OH), 3050, 1640, (-C=N), 1590, 
1080 (C-O ether), 1520, 1350. 1H NMR (400 
MHz, DMSO-d6) δ: 3.78 (s, 6H, 2OCH3), 
6.13 (2H, OH), 6.65 (s, 1H, C4-H), 6.78 (m, 
4H), 6.95 (m, 4H), 7.13 (m, 2H), 7.35 (d, 1H), 
7.63 (d, 1H), 7.72 (t, 1H), 8.21 (d, 1H). 13C 
NMR (400 MHz, DMSO-d6) δ: 56.17,101.33, 
102.45, 110.135, 110.87, 111.79, 115.56, 
116.21, 117.50, 120.62, 122.37, 123.68, 
126.69, 127.51, 128.85, 132.38, 132.79, 
141.17, 144.02,, 147.81, 148.41, 150.08, 
152.20, 163.37, 183.64. Anal. Calcd for 
C26H23N3O4: C 70.73, H 5.25, N 9.50, 
Found: C 70.62, H 5.27, N 9.56.

1-(2- furyl ) -3 ,5-bis( (E)-4-hydroxy-3-
methoxystyryl)-1H-pyrazol (2d)

Curcumin (1.5 mmole, 0.5 g) was dissolved 
in glacial acetic acid (8.0 mL) and to it, was 
added 2-Furoichydrazide (1.5 mmole, 0.2 g). 
Produced solution was refluxed for 12 h. Yield 
81 (0.52 g), mp 138-141°C, IR: vmax cm-1 
3605 (-C-OH), 3030, 1673 (–C=O amido), 
1640 ( -C=N), 1590, 1080 (C-O ether), 1520, 
1320 (C-O of the five-member ring). 1H-NMR 
(400 MHz, DMSO-d6) δ: 3.78 (s, 6H, OCH3), 
6.01 (s, 2H, OH), 6.50-7.32 (m, 13 H), 7.52 
(dd, 1H, J= 16.15Hz). 13C-NMR (400 MHz, 
DMSO-d6) δ: 56.03, 99.79, 101.4, 111.74, 
112.43, 115.18, 116.01, 116.14, 116.37, 
120.56, 121.52, 123.67, 126.74, 128.79, 
130.06, 141.18, 146.32, 146.67, 148.32, 
148.46, 149.89, 157.70, 183.30. Anal. Calcd 
for C25H22N2O5: C 69.76, H 5.15, N 6.51. 
Found: C 69.66, H 5.18, N 6.62.

1-carbohydrazidyl-3,5-bis-2-(4-hydroxy-3-
methoxystyryl)-1H-pyrazole (2e)

Curcumin (1.5 mmole, 0.5 g) was dissolved 
in glacial acetic acid (8.0 mL), to it was added 
carbohydrazide (1.5 mmole, 0.135 g). Produced 
solution was refluxed for 12 h. Yield 88.6 (0.0.56 
g), mp 151-154°C, IR: vmax cm-1 3605 (-C-OH), 
3320, 3275, 3190 (–C–NH), 3020, 1635 (-C=N), 
1600, 1080 (C-O ether).1H-NMR (400 MHz, 
DMSO-d6) δ: 3.78 (s, 3H, OCH3), 4.32 (s, 2H, 
NH), 6.01 (s, 2H, OH), 6.50-7.40 (m, 11H), 8.80 
(s, H, NH). 13C-NMR (400 MHz, DMSO-d6): 
56.07, 56.12, 100.1, 110.6, 116.08, 116.24, 

Compound MIC (mg/mL) MBC (mg/mL)

curcumin 1 1

2a 0.25 1

2b 0.25 1

2c 0.0625 1

2d 0.0625 1

2e 0.0625 1

3 0.25 1

4 0.0019 0.0075

5 0.0625

Table 3. A Summary of MIC And MBC Results of Curcumin 
and Synthesized Curcumin-based Heterocycles on S. aureus 
Bacteria.
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120.30, 120.66, 123.16, 123.34, 128.62, 129.81, 
130.4, 131.03, 143.78, 144.70, 147.13, 147.51, 
147.50, 150.69, 151.13, 161.06. Anal. Calcd 
for C22H22N4O5: C 62.55, H 5.25, N 13.26.  
Found: C 62.63, H 5.25, N 13.37.

3,5-bis-2-(4-hydroxy-3-methoxystyryl)-
isoxazole (3)

Curcumin (1.5 mmole, 0.5 g) was dissolved 
in glacial acetic acid (8.0 mL) and to it, was 
added hydroxylamine hydrochloride (1.5 
mmole, 0.11g). Produced solution was refluxed 
for 12 h. Yield 72.0 (0.4 g), mp 116-119°C, IR: 
3570 (-C-OH), 3030, 1605, 1586 (-C=N), 1330 
(C-O of the five-member ring) cm-1. 1H-NMR 
(400 MHz, DMSO-d6): 1H-NMR: δ 3.85 (s, 6H, 
2OCH3), 6.25 (s, 2H, OH), 6.71 (s, 1H, C4-H), 
6.84-7.01 (m, 3H), 7.04-7.15 (m, 4H), 7.26 (m, 
3H). 13C-NMR (300 MHz, CDCl

3
) δ ppm: 56.14, 

56.18, 98.33, 110.56, 110.82, 113.12, 113.43, 
115.98, 116.11, 116.24, 121.8, 122.16, 127.49, 
127.83, 129.22, 135.27, 135.98, 148.22, 148.42, 
162.70, 168.84. Anal. Calcd for C

21
H

19
NO

5
: C 

69.03, H 5.24, N 3.38.  Found: C 68.89, H 5.21, 
N 3.41.

3,5-bis-2-(4-hydroxy-3-methoxystyryl)-3,6-
dihydro-2H-1,4-diazepine (4)

Curcumin (1.5 mmole, 0.5 g) was dissolved 
in glacial acetic acid (8.0 mL) and then, 
ethylenediamine (1.5 mmole, 0.1 mL) was 
added to the solution. Produced solution was 
refluxed for 4 h. Yield 76.3 (0.45), mp 65-68°C 
(hydrated) IR: vmax cm-1 3605 (-C-OH), 3020, 
1640 (-C=N), 1600, 1080 (C-O ether). 1H-NMR 
(400 MHz, DMSO-d6) δ: 3.16 (s, 2H, CH

2
), 

3.764 (s, 4H, CH
2
CH

2
); 3.78 (s, 6H, OCH

3
), 

5.72 (s, 2H, OH), 6.85 (m, 2H), 6.91 (d, 2H, J 
= 15.2 Hz), 7.05 (d, 2H, J = 12.1 Hz), 7.20 (s, 
2H), 7.40- 7.60 (m, 2H). 13C-NMR (400 MHz, 
DMSO-d6) δ: 24.50, 48.30, 56.40, 112.90, 
116.30, 120.60, 122.40, 127.80, 129.30, 148.20, 
149.30, 165.80. LC/MS [M + 1] for C23H24N2O4 
Calcd 393.0, found: 394.0. Anal. Calcd for 
C23H24N2O4: C 70.39, H 6.16, N 7.14. Found: 
C 70.33, H 6.21, N 7.19. The differences in the 
[M+1] values could be due to the protonation 
of compound 4 during LC/MS analysis, since 
mobile phase used in the analysis was an acidic 
solution of aqueous methanol.

4,4›-((1E,3Z,5Z,6E)-3-(butylamino)-5-
(butylimino)hepta-1,3,6,triene-1,7-diyl) bis(2-
methoxyphenol) (5)

Curcumin (1.5 mmole, 0.5 g) was dissolved 
in glacial acetic acid (8.0 mL) and to it was added 
n-butyl amine (3 mmole, 0.25 mL). Produced 
solution was refluxed for 10 h. Yield 78% (0.56 
g), mp 106-109°C IR: vmax cm-1 3605 (-C-OH), 
3335 (–C–NH), 3040, 1640 (-C=N), 1600, 1080 
(C- O ether). 1H-NMR (400 MHz, DMSO-d6) 
δ: 0.79 (m, 6H), 1.23 (m, 4H), 1.32-1.41 (m, 
4H),1.82 (s, 1H), 2.52 (t, 2H), 2.72 (t, 2H), 3.78 
(s, 6H, OCH3), 6.10 (s, 2H, OH), 6.62 (s, 1H, 
C4-H), 6.84 (m, 4H, C2-H, C6-H), 7.10 (m, 2H), 
7.20 (m, 2H), 7.40 (d, 2H). 13C-NMR (400 MHz, 
DMSO-d6) δ: 13.60, 13.60, 19.20, 19.20,  35.30, 
36.10, 44.50, 46.80, 56.20, 56.43, 97.31, 109.74, 
111.95, 115.83, 116.12, 116.11, 121.50, 123.80, 
125.31, 129.3, 129.31, 135.55,136.26, 148.23, 
148.27, 149.92, 149.93, 152.81, 174.65. Anal 
Calcd for C29H38N2O4: C 72.77, H 8.00, N 
5.85.  Found: C 72.54, H 8.12, and N 5.76.

Antibacterial activity of materials
Culture media: Mueller-Hinton, Tryptic Soy 

Broth was obtained from Hylabs, Israel.
Microorganisms used
Bacterial strains used in the study were 

clinical isolates of Staphylococcus aureus, 
Escherichia coli, Proteus mirabilis, and 
Pseudomonas aeroginosa, were all isolated from 
patients suffering from bacterial infections with 
the relevant bacteria.

Procedure
These isolates were tested for their 

susceptibility to the prepared curcumin-based 
heterocyclics as follows:

Solutions of these derivatives were prepared 
at concentration of 4 mg per 1 mL of dimethyl 
sulfoxide (DMSO) solvent, and then incubated 
for 24 h at 37°C.

Screening the antimicrobial activity
The antibacterial bioactivities of the 

prepared heterocyclics were screened using the 
well diffusion method reported in the literature 
by Perez et al (55).

Three colonies of bacteria were transferred 
to sterile tubes each containing 5 mL of 
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Tryptic Soy Broth. Turbidity of the bacterial 
suspensions was then adjusted to reach an 
optical density equivalent to a 0.5 McFarland 
standard to give a bacterial suspension of 108 
cfu/mL (cfu: colony forming unit). Mueller-
Hinton agar plates were inoculated through 
streaking bacterial swabs over the entire 
surface of the plates. Produced Plates were 
allowed to dry at room temperature and 6 
mm wells were punched in each plate. In 
each plate, 50 µL of 4 mg/mL solutions of 
each curcumin derivatives were added into 
duplicate wells. Plates were allowed to stand 
at room temperature to let the tested derivative 
be diffused into the agar, and afterwards, they 
were incubated at 37°C for 18 to 24 h. Then, 
plates were examined for bacterial growth 
inhibition and zones of inhibition were 
measured in millimeters.

Determination of minimum inhibitory 
concentration (MIC)

Two-fold serial dilutions were prepared 
from the derivative solution in Tryptic Soy 
Broth. Duplicate tubes of each dilution were 
inoculated with 5 × 105 of the bacterial strains. 
All tubes were incubated at 37°C for 18 to                   
24 h. The highest dilution of the drug that 
resulted in inhibition of bacterial growth was 
considered as the MIC.

Determination of minimal bactericidal 
concentration (MBC)

Subcultures from the above dilutions were 
done on Muller-Hinton plates and incubated 
at 37°C for 18 to 24 h. The highest dilution 
that resulted in total inhibition of bacterial 
growth was then determined and considered 
as MBC.
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