(1) Zhang CL, Huang T, Wu BL, He WX and Liu D.
Stem cells in cancer therapy: opportunities and
challenges. Oncotarget. 2017;8(43):75756.
(2) Li F, Zhou K, Gao L, Zhang B, Li W, Yan W, Song
X, Yu H, Wang S, Yu N and Jiang Q. Radiation
induces the generation of cancer stem cells: A novel
mechanism for cancer radioresistance. Oncol. Lett.
(2016) 12: 3059-65.
(3) Ebben JD, Treisman DM, Zorniak M, Kutty
RG, Clark PA and Kuo JS. The cancer stem
cell paradigm: a new understanding of tumor
development and treatment. Expert Opin. Ther.
Targets (2010) 14: 621-32.
(4) Barzegar Behrooz A, Syahir A and Ahmad S.
CD133: beyond a cancer stem cell biomarker. J.
Drug Target. (2019) 27: 257-69.
(5) Kim WT and Ryu CJ. Cancer stem cell surface
markers on normal stem cells. BMB Rep. (2017)
50: 285.
(6) Schmohl JU and Vallera DA. CD133, selectively
targeting the root of cancer. Toxins. (2016) 8: 165.
(7) Ghani S, Bahrami S, Rafiee B, Eyvazi S, Yarian
F, Ahangarzadeh S, Khalili S, Shahzamani K,
Jafarisani M, Bandehpour M and Kazemi B.
Recent developments in antibody derivatives
against colorectal cancer; A review. Life Sci. (2020)
: 118791.
(8) Glumac PM and LeBeau AM. The role of CD133
in cancer: a concise review. Clin. Trans. Med.
(2018) 7: 18.
(9) Chen X, Guan H, Liu XD, Xie DF, Wang Y, Ma T,
Huang B and Zhou P-K. p53 positively regulates
the expression of cancer stem cell marker CD133
in HCT116 colon cancer cells. Oncol. Lett. (2018)
16: 431-8.
(10) Li Z. CD133: a stem cell biomarker and beyond.
Exp. Hematol. Oncol. (2013) 2: 1-8.
(11) Bidlingmaier S, Zhu X and Liu B. The utility and
90
An In-silico Approach and Experimental Analysis Combination
limitations of glycosylated human CD133 epitopes
in defining cancer stem cells. J. Mol. Med. (2008)
86: 1025.
(12) Kemper K, Sprick MR, de Bree M, Scopelliti A,
Vermeulen L, Hoek M, Zeilstra J, Pals ST, Mehmet
H, Stassi G and Medema JP. The AC133 epitope,
but not the CD133 protein, is lost upon cancer stem
cell differentiation. Cancer Res. (2010) 70: 719-29.
(13) Barrantes-Freer A, Renovanz M, Eich M,
Braukmann A, Sprang B, Spirin P, Pardo LA,
Giese A and Kim EL. CD133 expression is not
synonymous to immunoreactivity for AC133 and
fluctuates throughout the cell cycle in glioma stemlike cells. PLoS One (2015) 10: e0130519.
(14) Mallard BW and Tiralongo J. Cancer stem cell
marker glycosylation: nature, function and
significance. Glycoconj. J. (2017) 34: 441-52.
(15) Jang JW, Song Y, Kim SH, Kim J and Seo HR.
Potential mechanisms of CD133 in cancer stem
cells. Life Sci. (2017) 184: 25-9.
(16) Thamm K, Graupner S, Werner C, Huttner WB
and Corbeil D. Monoclonal antibodies 13A4 and
AC133 do not recognize the canine ortholog of
mouse and human stem cell antigen prominin-1
(CD133). PloS one. (2016) 11.
(17) Ponomarenko J, Bui H-H, Li W, Fusseder N,
Bourne PE, Sette A and Peters B. ElliPro: a new
structure-based tool for the prediction of antibody
epitopes. BMC Bioinform. (2008) 9: 514.
(18) Gasteiger E, Gattiker A, Hoogland C, Ivanyi I,
Appel RD and Bairoch A. ExPASy: the proteomics
server for in-depth protein knowledge and analysis.
Nucleic Acids Res. (2003) 31: 3784-8.
(19) Doytchinova IA and Flower DR. VaxiJen: a server
for prediction of protective antigens, tumour
antigens and subunit vaccines. BMC Bioinform.
(2007) 8: 4.
(20) Cheng J, Randall AZ, Sweredoski MJ and Baldi
P. SCRATCH: a protein structure and structural
feature prediction server. Nucleic Acids Res. (2005)
33: W72-6.
(21) Yang J, Yan R, Roy A, Xu D, Poisson J and Zhang
Y. The I-TASSER Suite: protein structure and
function prediction. Nat. Methods. (2015) 12: 7.
(22) Pontius J, Richelle J and Wodak SJ. Deviations
from standard atomic volumes as a quality measure
for protein crystal structures. J. Mol Biol. (1996)
264: 121-36.
(23) Wiederstein M and Sippl MJ. ProSA-web:
interactive web service for the recognition of errors
in three-dimensional structures of proteins. Nucleic
Acids Res. (2007) 35: W407-10.
(24) Kazemi B, Tohidi F, Bandehpour M and Yarian
F. Molecular cloning, expression and enzymatic
assay of pteridine reductase 1 from Iranian lizard
Leishmania. Iran. Biomed. J. (2010) 14: 97-102.
(25) Yarian F, Bandehpour M, Seyed N and Kazemi B.
Cloning, expression and purification of the factor
H binding protein and its interaction with factor H.
Iran. J. Microbiol. (2016) 8: 29.
(26) Yarian F, Kazemi B and Bandehpour M.
Identification and characterization of a novel
single-chain variable fragment (scFv) antibody
against Neisseria meningitidis factor H-binding
protein (fHbp). J. Med. Microbiol. (2018) 67: 820-
7.
(27) Darabi P, Galehdari H, Khatami SR, Shahbazian
N, Shafeei M, Jalali A and Khodadadi A. Codon
optimization, cloning and expression of the human
Leukemia Inhibitory Factor (hLIF) in E. coli. Iran.
J. Biotechnol. (2013) 11: 47-53.
(28) Singh SK, Clarke ID, Terasaki M, Bonn VE,
Hawkins C, Squire J and Dirks PB. Identification
of a cancer stem cell in human brain tumors.
Cancer Res. (2003) 63: 5821-8.
(29) Hawse JR, Carter JM, Aspros KG, Bruinsma
ES, Koepplin JW, Negron V, Subramaniam M,
Ingle JN, Rech KL and Goetz MP. Optimized
immunohistochemical detection of estrogen
receptor beta using two validated monoclonal
antibodies confirms its expression in normal and
malignant breast tissues. Breast Cancer Res. Treat.
(2020) 179: 241-9.
(30) Ried K, Tamanna T, Matthews S, Eng P and Sali A.
New screening test improves detection of prostate
cancer using circulating tumor cells and prostatespecific markers. Front. Oncol. (2020) 10: 582.
(31) Ghani S, Deravi N, Pirzadeh M, Rafiee B Gatabi
ZR, Bandehpour M and Yarian F. Antibody
fragment and targeted colorectal cancer therapy:
A global systematic review. Curr. Pharm. Biotech.
(2021) [in press].
(32) Murby M, Uhlén M and Ståhl S. Upstream
strategies to minimize proteolytic degradation
upon recombinant production in Escherichia coli.
Protein Expr. Purif. (1996) 7: 129-36.
(33) Rosano GL and Ceccarelli EA. Recombinant
protein expression in Escherichia coli: advances
and challenges. Front. Microbiol. (2014) 5: 172.
(34) Swaminathan SK, Olin MR, Forster CL, Santa Cruz
KS, Panyam J and Ohlfest JR. Identification of a
novel monoclonal antibody recognizing CD133. J.
Immunol. Methods. (2010) 361: 110-5.
(35) Sachdeva S, Ahmad G, Malhotra P, Mukherjee P
and Chauhan V. Comparison of immunogenicities
of recombinant Plasmodium vivax merozoite
surface protein 1 19-and 42-kiloDalton fragments
expressed in Escherichia coli. Infect. Immun.
91
Ghani S et al. / IJPR (2021), 20 (4): 80-91
(2004) 72: 5775-82.
(36) Razzaqi M, Rasaee MJ and Paknejad M. A
critical challenge in the development of antibody:
Selecting the appropriate fragment of the target
protein as an antigen based on various epitopes or
similar structure. Mol. Immunol. (2019) 111: 128-
35.
(37) Wang D, Guo Y, Li Y, Li W, Zheng X, Xia H
and Mao Q. Detection of CD133 expression in
U87 glioblastoma cells using a novel anti-CD133
monoclonal antibody. Oncol. Lett. (2015) 9: 2603-
8.
(38) Rezaie E, Pour AB, Amani J and Hosseini
HM. Bioinformatics Predictions, Expression,
Purification and Structural Analysis of the
PE38KDEL-scfv Immunotoxin Against EPHA2
Receptor. Int. J. Pept. Res. Ther. (2019) : 1-18.