Design, Synthesis, Docking Study and Biological Evaluation of 4-Hydroxy-2H-benzo[e][1,2]thiazine-3-carboxamide 1,1-dioxide Derivatives as Anti-HIV Agents

Document Type : Research article


1 Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

2 Hepatitis and AIDS department, Pasteur Institute of Iran, Tehran, Iran.

3 Medical Lab Technology Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.



A novel series of benzothiazine-3-carboxamide 1,1-dioxide derivatives by modifying the piroxicam scaffold was designed, synthesized, and evaluated as anti-HIV agents. The 1,2-benzothiazine-3-carboxamide 1,1-dioxide scaffold consists of hydroxy and carboxamide groups as a chelating motif to form an interaction with Mg2+ ions within the integrase active site as a target. Most of the compounds displayed encouraging anti-HIV activity in a cell-based assay. Among them, compounds 13d, 13l and 13m were the most potent with EC50 values ranging from 20-25 mM and SI > 26. Docking study of compounds in integrase active site proposed that the mechanism of action of compounds might be through Mg2+ chelation within integrase active site. The lack of severe cytotoxicity and favorable anti-HIV activity of benzothiazine-3-carboxamide 1,1-dioxide derivatives support further modifications to improve the potency.

Graphical Abstract

Design, Synthesis, Docking Study and Biological Evaluation of 4-Hydroxy-2H-benzo[e][1,2]thiazine-3-carboxamide 1,1-dioxide Derivatives as Anti-HIV Agents


(1) Gu WG. Newly approved integrase inhibitors forclinical treatment of AIDS. Biomed. Pharmacother.(2014) 68: 917-21
(2) Barbaro G, Scozzafava A, Mastrolorenzo A andSupuran CT. Highly active antiretroviral therapy:Current state of the art, new agents and theirpharmacological interactions useful for improvingtherapeutic outcome. Curr. Pharm. Des. (2005) 11:1805-43.
(3) Al-Mawsawi LQ, Al-Safi RI and Neamati N. Clinicalprogress of HIV-1 integrase inhibitors. Exp. Opin.Emerg. Drugs (2008) 13: 213-25.
(4) Porter K, Babiker A, Bhaskaran K, DarbyshireJ, Pezzotti P and Walker AS. Determinants ofsurvival following HIV-1 seroconversion after theintroduction of HAART. Lancet (2003) 362: 1267-74.
(5) Ray M, Logan R, Sterne JA, Hernandez-Diaz S,Robins JM, Sabin C, Bansi L, van Sighem A, de WolfF, Costagliola D, Lanoy E, Bucher HC, von Wyl V,Esteve A, Casbona J, del Amo J, Moreno S, JusticeA, Goulet J, Lodi S, Phillips A, Seng R, Meyer L,Perez-Hoyos S, Garcia de Olalla P and Hernan MA.The effect of combined antiretroviral therapy on theoverall mortality of HIV-infected individuals. AIDS(2010) 24: 123-37.
(6) Cihlar T and Fordyce M. Current status and prospectsof HIV treatment. Curr. Opin. Virol. (2016) 18: 50-6.
(7) Goldgur Y, Craigie R, Cohen GH, Fujiwara T,Yoshinaga T, Fujishita T, Sugimoto H, Endo T, MuraiH and Davies DR. Structure of the HIV-1 integrasecatalytic domain complexed with an inhibitor: aplatform for antiviral drug design. Proc. Natl. Acad.Sci. U. S. A. (1999) 96: 13040-3.
(8) Kawasuji T, Yoshinaga T, Sato A, Yodo M,Fujiwara T and Kiyama R. A platform for designingHIV integrase inhibitors. Part 1: 2-hydroxy-3-heteroaryl acrylic acid derivatives as novel HIVintegrase inhibitor and modeling of hydrophilic andhydrophobic pharmacophores. Bioorg. Med. Chem.(2006) 14: 8430-45.
(9) K Narang B, K Grewal G, Roy S, Bariwal J, K GuptaM and K Rawal R. A novel integrase targeting agentto explore the future prospective of HIV eradication:dolutegravir. Curr. HIV Res. (2014) 12: 325-38.
(10) Hazuda DJ. HIV integrase as a target forantiretroviral therapy. Curr. Opin. HIV AIDS. (2012)7: 383-9.
(11) Sechi M, Carta F, Sannia L, Dallocchio R, DessìA, Al-Safi RI and Neamati N. Design, synthesis,molecular modeling, and anti-HIV-1 integraseactivity of a series of photoactivatable diketo acidcontaining inhibitors as affinity probes. Antivir. Res.(2009) 81: 267-76.
(12) Zhao XZ, Smith SJ, Maskell DP, Metifiot M, PyeVE, Fesen K, Marchand C, Pommier Y, CherepanovFigure 4. Superimposition of compound 13l (shown in blue) onraltegravir (shown in yellow) in the PFV IN active site.
(13) Galilee M, Britan-Rosich E, Griner SL, Uysal S,Baumgärtel V, Lamb DC, Kossiakoff AA, KotlerM, Stroud RM and Marx A. The preserved HTHdocking cleft of HIV-1 integrase is functionallycritical. Structure (2016) 24: 1936-46.
(14) Trivedi J, Mahajan D, Jaffe RJ, Acharya A, MitraD and Byrareddy SN. Recent Advances in theDevelopment of Integrase Inhibitors for HIVTreatment. Curr. HIV/AIDS Rep. (2020) 17: 63-75.
(15) Gill MSA, Hassan SS and Ahemad N. Evolutionof HIV-1 reverse transcriptase and integrase dualinhibitors: Recent advances and developments. Eur.J. Med. Chem. (2019) 179: 423-48.
(16) Cai M, Zheng R, Caffrey M, Craigie R, Clore GMand Gronenborn AM. Solution structure of theN-terminal zinc binding domain of HIV-1 integrase.
Nat. Struct. Biol. (1997) 4: 567.
(17) Lutzke RAP and Plasterk RH. Structure-basedmutational analysis of the C-terminal DNAbinding domain of human immunodeficiencyvirus type 1 integrase: critical residues for proteinoligomerization and DNA binding. J. Virol. (1998)72: 4841-8.
(18) Rogolino D, Carcelli M, Sechi M and NeamatiN. Viral enzymes containing magnesium: Metalbinding as a successful strategy in drug design.Coord. Chem. Rev. (2012) 256: 3063-86.
(19) Mouscadet J-F, Delelis O, Marcelin A-G andTchertanov L. Resistance to HIV-1 integraseinhibitors: a structural perspective. Drug Res.Updates. (2010) 13: 139-50.
(20) Pommier Y, Johnson AA and Marchand C. Integraseinhibitors to treat HIV/AIDS. Nat. Rev. DrugDiscov. (2005) 4: 236.
(21) Choi E, Mallareddy JR, Lu D and Kolluru S.Recent advances in the discovery of small-moleculeinhibitors of HIV-1 integrase. Future Sci. OA.(2018) 4: FSO338.
(22) Cocohoba J and Dong BJ. Raltegravir: the first HIVintegrase inhibitor. Clin. Ther. (2008) 30: 1747-65.
(23) Shimura K and Kodama EN. Elvitegravir: a newHIV integrase inhibitor. Antivir. Chem. Chemother.
(2009) 20: 79-85.
(24) Kawasuji T, Johns BA, Yoshida H, Taishi T, TaodaY, Murai H, Kiyama R, Fuji M, Yoshinaga T, SekiT, Kobayashi M, Sato A and Fujiwara T. Carbamoylpyridone HIV-1 integrase inhibitors.Moleculardesign and establishment of an advanced two-metal
binding pharmacophore. J. Med. Chem. (2012) 55:8735−44.
(25) Kawasuji T, Johns BA, Yoshida H, Weatherhead JG,Akiyama T, Taishi T, Taoda Y, Mikamiyama-IwataM, Murai H, Kiyama R, Fuji M, Yoshinaga T, SekiT, Kobayashi M, Sato A, Garvey EP and FujiwaraT. Carbamoyl pyridone HIV-1 integrase inhibitors.2. Bi- and tricyclic derivatives result in superiorantiviral and pharmacokinetic profiles. J. Med.Chem. (2013) 56: 1124−35.
(26) Hajimahdi Z and Zarghi A. Progress in HIV-1integrase inhibitors: A review of their chemicalstructure diversity. Iran. J. Pharm. Res. (2016) 15:595-628.
(27) Goethals O, Van Ginderen M, Vos A, CummingsMD, Van Der Borght K, Van Wesenbeeck L,Feyaerts M, Verheyen A, Smits V, Van Loock M,Hertogs K, Schols D and Clayton RF. Resistance toraltegravir highlights integrase mutations at codon148 in conferring cross-resistance to a secondgeneration HIV-1 integrase inhibitor. Antivir. Res.(2011) 91: 167-76.
(28) Piralla A, Paolucci S, Gulminetti R, Comolli G andBaldanti F. HIV integrase variability and geneticbarrier in antiretroviral naive and experiencedpatients. Virol. J. (2011) 8: 149.
(29) Christofis P, Katsarou M, Papakyriakou A, SanakisY, Katsaros N and Psomas G. Mononuclear metalcomplexes with Piroxicam: Synthesis, structure andbiological activity. J. Inorg. Biochem. (2005) 99:2197-210.
(30) Cini R. Anti-inflammatory compounds as ligandsin metal complexes as revealed in X-ray structuralstudies. Comments Inorg. Chem. (2000) 22: 151-86.
(31) Cini R, Giorgi G, Cinquantini A, Rossi C and SabatM. Metal complexes of the antiinflammatory drugpiroxicam. Inorg. Chem. (1990) 29: 5197-200.
(32) Hosseini SM, Imani A, Rahimzadegan M,Mohammadi S and Golaghaei A. Synthesis andbiological evaluation of Piroxicam derivative as alead chelator. Main Group Metal Chem. (2019) 42:73-80.
(33) Fujishita T, Yoshinaga T and Sato A. Preparationof aromatic heterocycle compounds having HIVintegrase inhibiting activities. Shionogi & Co., Ltd.patent PCT int. appl. WO-00039086. (2000)
(34) Trott O and Olson AJ. AutoDock Vina: improvingthe speed and accuracy of docking with a newscoring function, efficient optimization, andmultithreading. J. Comput. Chem. (2010) 31: 455-61.
(35) Morris GM, Goodsell DS, Halliday RS, Huey R,Hart WE, Belew RK and Olson AJ. Automateddocking using a Lamarckian genetic algorithmand an empirical binding free energy function. J.Comput. Chem. (1998) 19: 1639-62.12Imani A et al. / IJPR (2021), 20 (3): 1-12
(36) HyperChem(TM) Professional 8.0, Hypercube,Inc., 1115 NW 4th Street, Gainesville, Florida32601, USA.
(37) Hajimahdi Z, Zarghi A, Zabihollahi R andAghasadeghi MR. Synthesis, biologicalevaluation, and molecular modeling studies of new1,3,4-oxadiazole- and 1,3,4-thiadiazole-substituted4oxo-4H-pyrido[1,2-a]pyrimidines as anti-HIV-1agents. Med. Chem. Res. (2013) 22: 2467–75.
(38) Ebrahimzadeh E, Tabatabai SA, Vahabpour R,Hajimahdi Z and Zarghi A. Design, synthesis,molecular modeling study and biological evaluationof new n’-arylidene-pyrido [2,3-d]pyrimidine-5-carbohydrazide derivatives as anti-HIV-1 agents.Iran. J. Pharm. Res. (2019) 18: 237-48.
(39) Safakish M, Hajimahdi Z, Aghasadeghi MR,Vahabpour R and Zarghi A. Design, synthesis,molecular modeling and anti-HIV assay of novelquinazolinone incorporated coumarin derivatives.Curr. HIV Res. (2020) 18: 41-51.
(40) Faghihi K, Safakish M, Zebardast T, HajimahdiZ and Zarghi A. Molecular docking and QSARstudy of 2-benzoxazolinone, quinazoline anddiazocoumarin derivatives as anti-HIV-1 agents.Iran. J. Pharm. Res. (2019) 18: 1253-63.
(41) Hare S, Gupta SS, Valkov E, Engelman A andCherepanov P. Retroviral intasome assembly andinhibition of DNA strand transfer. Nature (2010)464: 232–6.
(42) Hare S, Vos AM, Clayton RF, Thuring JW,Cummings MD and Cherepanov P. Molecularmechanisms of retroviral integrase inhibition andthe evolution of viral resistance. Proc. Natl. Acad.Sci. U. S. A. (2010) 107: 20057-62.