Design, Synthesis, and Anticancer Activity Evaluation of Hybrids of Azoles and Barbituric Acids

Document Type : Research article

Authors

Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.

Abstract

 In order to find new drugs with potent antiproliferative effect, a series of novel barbituric acid derivatives containing azoles at the C-5 position were designed, synthesized, and evaluated for antiproliferative activity against three human cancer cell lines (BEL-7402, MCF-7, and HCT-116) using MTT assay. Several of the synthesized compounds exhibited potent antiproliferative effects. The most promising compound was 5-((1-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-4-yl) methylene)pyrimidine-2,4,6(1H,3H,5H)-trione (3s), which showed considerably high antiproliferative activity in the BEL-7402 cell line, with a half-maximal  inhibitory concentration of 4.02 µM and 20.45-fold higher selectivity for BEL-7402 cells than for normal L02 cells. The apoptosis experiment showed that compound 3s induced apoptosis and cell necrosis in a concentration-dependent manner and exert its anti-proliferative activity. Therefore, compound 3s exhibited better therapeutic activity and specificity compared with the positive control 5-fluorouracil.

Graphical Abstract

Design, Synthesis, and Anticancer Activity Evaluation of Hybrids of Azoles and Barbituric Acids

Keywords