Effect of Menadione and Combination of Gemcitabine and Cisplatin on Cancer Stem Cells in Human Non-small Cell Lung Cancer (NSCLC) Cell Line A549

Document Type : Research article


Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran.


Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Chemotherapy-induced adverse effects and resistance of NSCLC to conventional drugs reduce the efficacy of current therapies. Tumors contain a small population of cancer stem cells (CSCs) that play a critical role in tumor initiation, maintenance, and drug resistance that finally lead to cancer recurrence. Therefore, CSC-targeting therapies can offer the best hope for developing curative cancer therapies. Vitamins have a high potential for cancer prevention and treatment. Vitamins also ameliorate the side effects which occur in chemo-radio therapy. Menadione (2-methyl-1,4-naphthoquinone/vitamin-K3) is a synthetic form of vitamin K that indicated antitumor activities. The purpose of this study was to evaluate the anti-CSCs effect of menadione and combination of cisplatin and gemcitabine as a first-line treatment in patients with NSCLC on the NSCLC cell line A549. MTT results displayed decreased cell survival after treatment with cisplatin/gemcitabine for 48 h treatment (IC50 values 0.25 µM for cisplatin and 5 µM for gemcitabine). Menadione also inhibited the cell growth in A549 cells (IC50: 16 µM). Quantitative RT-PCR showed significant downregulation of CSC markers (Oct4, Nanog, Sox2, Aldh1, Abcb1, CD44, and CD133) and Snail, epithelial-mesenchymal transition marker, after treatment with menadione and cisplatin/gemcitabine. Flow cytometry showed CD44-positive cells that constitute a high percentage (70%) of A549 cells reduced significantly after treatment with cisplatin/gemcitabine or menadione. However, A549 cells did not show a significant population positive for CD133 and ABCB1 (less than 0.05%), and these fractions did not change after treatment with two agents.

Graphical Abstract

Effect of Menadione and Combination of Gemcitabine and Cisplatin on Cancer Stem Cells in Human Non-small Cell Lung Cancer (NSCLC) Cell Line A549


(1)           Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA  Cancer J. Clin. (2018) 68: 394-424.
(2)           Siegel RL, Miller KD and Jemal A. Cancer statistics, 2016. CA  Cancer J. Clin. (2016) 66: 7-30.
(3)           Hu B, Ma Y, Yang Y, Zhang L, Han H and Chen J. CD44 promotes cell proliferation in non-small cell lung cancer. Oncol. Lett. (2018) 15: 5627-33.
(4)           Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E, Gatti L, Pratesi G, Fabbri A, Andriani F and Tinelli S. Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc. Natl. Acad. Sci. (2009) 106: 16281-6.
(5)           Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C and De Maria R. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death  Differ. (2008) 15: 504-14.
(6)           Zheng Y, Cecile C, Sayles LC, Alleyne-Chin C, Vaka D, Knaak TD, Bigos M, Xu Y, Hoang CD and Shrager JB. A rare population of CD24+ ITGB4+ Notchhi cells drives tumor propagation in NSCLC and requires Notch3 for self-renewal. Cancer cell. (2013) 24: 59-74.
(7)           Lundholm L, Hååg P, Zong D, Juntti T, Mörk B, Lewensohn R and Viktorsson K. Resistance to DNA-damaging treatment in non-small cell lung cancer tumor-initiating cells involves reduced DNA-PK/ATM activation and diminished cell cycle arrest. Cell death dis. (2013) 4: e478.
(8)           Liang S, Marti T, Dorn P, Froment L, Hall S, Berezowska S, Kocher G, Schmid R and Peng R. Blocking the epithelial-to-mesenchymal transition pathway abrogates resistance to anti-folate chemotherapy in lung cancer. Cell death dis. (2015) 6: e1824.
(9)           Soltanian S and Matin MM. Cancer stem cells and cancer therapy. Tumor Biol. (2011) 32: 425-40.
(10)         Liu A, Yu X and Liu S. Pluripotency transcription factors and cancer stem cells: small genes make a big difference. Chin. J. Cancer. (2013) 32: 483.
(11)         Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL and Jenner RG. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell.  (2005) 122: 947-56.
(12)         Tomita H, Tanaka K, Tanaka T and Hara A. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget. (2016) 7: 11018.
(13)         Tanei T, Morimoto K, Shimazu K, Kim SJ, Tanji Y, Taguchi T, Tamaki Y and Noguchi S. Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin. Cancer Res. (2009) 15: 4234-41.
(14)         Abdullah LN and Chow EK-H. Mechanisms of chemoresistance in cancer stem cells. Clin. Transl. Med. (2013) 2: 3.
(15)         Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD and Rich JN. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. (2006) 444: 756-60.
(16)         Mathews LA, Cabarcas SM and Farrar WL. DNA repair: the culprit for tumor-initiating cell survival? Cancer Metast. Rev. (2011) 30: 185-97.
(17)         Mathews LA, Cabarcas SM, Hurt EM, Zhang X, Jaffee EM and Farrar WL. Increased expression of DNA repair genes in invasive human pancreatic cancer cells. Pancreas. (2011) 40: 730.
(18)         Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV and Varticovski L. Brca1 breast tumors contain distinct CD44+/CD24-and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res. (2008) 10: R10.
(19)         Pan ST, Li ZL, He ZX, Qiu JX and Zhou SF. Molecular mechanisms for tumour resistance to chemotherapy. Clin. Exp. Pharmacol. P. (2016) 43: 723-37.
(20)         Doyle LA and Ross DD. Multidrug resistance mediated by the breast cancer resistance Doyle LA, Ross DD. Multdrug resistance mediated by the breast cancer resistance protein BCRP ). Oncogene. (2003) 22: 7340.
(21)         Gottesman MM, Fojo T and Bates SE. Multidrug resistance in cancer: role of ATP–dependent transporters. Nat. Rev. Cancer. (2002) 2: 48-58.
(22)         Viale A, De Franco F, Orleth A, Cambiaghi V, Giuliani V, Bossi D, Ronchini C, Ronzoni S, Muradore I and Monestiroli S. Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature. (2009) 457: 51.
(23)         Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, Bernard L, Viale G, Pelicci PG and Di Fiore PP. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell. (2010) 140: 62-73.
(24)         Valent P, Bonnet D, De Maria R, Lapidot T, Copland M, Melo JV, Chomienne C, Ishikawa F, Schuringa JJ and Stassi G. Cancer stem cell definitions and terminology: the devil is in the details. Nat. Rev. Cancer. (2012) 12: 767.
(25)         Prieto-Vila M, Takahashi R-u, Usuba W, Kohama I and Ochiya T. Drug resistance driven by cancer stem cells and their niche. Int. J. Mol. Sci. (2017) 18: 2574.
(26)         Phi LTH, Sari IN, Yang Y-G, Lee S-H, Jun N, Kim KS, Lee YK and Kwon HY. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem cells Int. (2018) 2018.
(27)         Soltanian S and Dehghani H. BORIS: a key regulator of cancer stemness. Cancer cell Int. (2018) 18: 154-67.
(28)         Soltanian S, Sheikhbahaei M and Mohamadi N. Cytotoxicity Evaluation of Methanol Extracts of Some Medicinal Plants on P19 Embryonal Carcinoma Cells. J. Appl. Pharm. Sci. (2017) 7: 142-9.
(29)         Jain A, Tiwari A, Verma A and Jain S. Vitamins for cancer prevention and treatment: an insight. Curr. Mol. Med. (2017) 17: 321-40.
(30)         Lockwood K, Moesgaard S, Yamamoto T and Folkers K. Progress on therapy of breast cancer with vitamin Q10 and the regression of metastases. Biochem. Biophys. Res. Commun. (1995) 212: 172-77
(31)         Fortmann SP, Burda BU, Senger CA, Lin JS and Whitlock EP. Vitamin and mineral supplements in the primary prevention of cardiovascular disease and cancer: an updated systematic evidence review for the US Preventive Services Task Force. Ann. Intern. Med . (2013) 159: 824-34.
(32)         Nutter LM, Ann-Lii C, Hsiao-Ling H, Ruey-Kun H, Ngo EO and Tsang-Wu L. Menadione: spectrum of anticancer activity and effects on nucleotide metabolism in human neoplastic cell lines. Biochem. Pharmacol. (1991) 41: 1283-92.
(33)         Juan C-C and Wu FY. Vitamin K3 inhibits growth of human hepatoma HepG2 cells by decreasing activities of both p34cdc2 kinase and phosphatase. Biochem. Bioph. Res. Co. (1993) 190: 907-13.
(34)         Matzno S, Yamaguchi Y, Akiyoshi T, Nakabayashi T and Matsuyama K. An attempt to evaluate the effect of vitamin K3 using as an enhancer of anticancer agents. Biol. Pharm. Bull. (2008) 31: 1270-3.
(35)         Akman SA, Dietrich M, Chlebowski R, Limberg P and Block JB. Modulation of cytotoxicity of menadione sodium bisulfite versus leukemia L1210 by the acid-soluble thiol pool. Cancer Res. (1985) 45: 5257-62.
(36)         Akman SA, Doroshow JH, Dietrich MF, Chlebowski RT and Block JS. Synergistic cytotoxicity between menadione and dicumarol vs. murine leukemia L1210. J. Pharmacol. Exp. Ther. (1987) 240: 486-91.
(37)         Jamison JM, Gilloteaux J, Taper HS and Summers JL. Evaluation of the in vitro and in vivo antitumor activities of vitamin C and K-3 combinations against human prostate cancer. J. Nutr. (2001) 131: 158S-60S.
(38)         Suresh S, Raghu D and Karunagaran D. Menadione (Vitamin K3) induces apoptosis of human oral cancer cells and reduces their metastatic potential by modulating the expression of epithelial to mesenchymal transition markers and inhibiting migration. Asian Pac. J. Cancer Prev. (2013) 14: 5461-5.
(39)         Tarin D. The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res. (2005) 65: 5996-6001.
(40)         Kalluri R and Weinberg RA. The basics of epithelial-mesenchymal transition. J. Clin. Invest. (2009) 119: 1420-8.
(41)         Shibue T and Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. (2017) 14: 611.
(42)         Singh A and Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene. (2010) 29: 4741.
(43)         Mani SA, Guo W, Liao M-J, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC and Shipitsin M. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. (2008) 133: 704-15.
(44)         Du B and Shim J. Targeting epithelial–mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules. (2016) 21: 965.
(45)         Moustakas A and de Herreros AG. Epithelial–mesenchymal transition in cancer. Mol. Oncol. (2017) 11: 715.
(46)         Villarejo A, Cortés-Cabrera Á, Molina-Ortíz P, Portillo F and Cano A. Differential role of Snail1 and Snail2 zinc fingers in E-cadherin repression and epithelial to mesenchymal transition. J. Biol. Chem. (2014) 289: 930-41.
(47)         Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J and De Herreros AG. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat. Cell Biol. (2000) 2: 84.
(48)         Lee W-J. The prospects of vitamin C in cancer therapy. Immune. network. (2009) 9: 147
(49)         Woodward WA and Sulman EP. Cancer stem cells: markers or biomarkers? Cancer Metast. Rev. (2008) 27: 459-70.
(50)         Marhaba R, Klingbeil P, Nuebel T, Nazarenko I, Buechler MW and Zoeller M. CD44 and EpCAM: cancer-initiating cell markers. Curr. Mol. Med. (2008) 8: 784-804.
(51)         Cosaert J and Quoix E. Platinum drugs in the treatment of non-small-cell lung cancer. Brit. J. cancer. (2002) 87: 825.
(52)         Leon G, MacDonagh L, Finn SP, Cuffe S and Barr MP. Cancer stem cells in drug resistant lung cancer: Targeting cell surface markers and signaling pathways. Pharmacol. Therapeut. (2016) 158: 71-90.
(53)         Chen L-S, Wang A-X, Dong B, Pu K-F, Yuan L-H and Zhu Y-M. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer. Chin. J. Cancer. (2012) 31: 564.
(54)         Jiang Q. Natural forms of vitamin E as effective agents for cancer prevention and therapy. Adv. Nutr. (2017) 8: 850-67.
 (55)        Park S, Sung J and Chung N. Berberine diminishes side population and down-regulates stem cell-associated genes in the pancreatic cancer cell lines PANC-1 and MIA PaCa-2. Mol Cell Biochem. (2014) 394: 209-15.
(56)         Soltanian S, Riahirad H, Pabarja A, KARIMZADEH MR, Saeidi K, Perez-Tejada E, Morales-Corona J, Gomez-Quiroz L, Gutierrez-Ruiz M and Olayo R. Kaempferol and docetaxel diminish side population and down-regulate some cancer stem cell markers in breast cancer cell line MCF-7. Biocell. (2017) 41: 33-40.
(57)         Soltanian S, Riahirad H, Pabarja A, Jafari E and Khandani BK. Effect of Cinnamic acid and FOLFOX in diminishing side population and downregulating cancer stem cell markers in colon cancer cell line HT-29. DARU. (2018) 26: 19-29.
(58)         Kim B, Jung N, Lee S, Sohng JK and Jung HJ. Apigenin Inhibits Cancer Stem Cell‐Like Phenotypes in Human Glioblastoma Cells via Suppression of c‐Met Signaling. Phytother. Res. (2016) 30: 1833-40.
(59)         Ailles LE and Weissman IL. Cancer stem cells in solid tumors. Curr. Opin. Biotech. (2007) 18: 460-6.
(60)         Glumac PM and LeBeau AM. The role of CD133 in cancer: a concise review. Clin. Transl. Med.  (2018) 7: 18.
(61)         Taylor WF and Jabbarzadeh E. The use of natural products to target cancer stem cells. Am. J. Cancer Res. (2017) 7: 1588.
(62)         Wang C, Xie J, Guo J, Manning HC, Gore JC and Guo N. Evaluation of CD44 and CD133 as cancer stem cell markers for colorectal cancer. Oncol. Rep. (2012) 28: 1301-8.
(63)         Almanaa TN, Geusz ME and Jamasbi RJ. Effects of curcumin on stem-like cells in human esophageal squamous carcinoma cell lines. BMC Ccmplem. Altern. M. (2012) 12: 195.
(64)         Kanwar SS, Yu Y, Nautiyal J, Patel BB, Padhye S, Sarkar FH and Majumdar AP. Difluorinated-curcumin (CDF): a novel curcumin analog is a potent inhibitor of colon cancer stem-like cells. Pharm. Res. (2011) 28: 827-38.
(65)         Nakahata K, Uehara S, Nishikawa S, Kawatsu M, Zenitani M, Oue T and Okuyama H. Aldehyde dehydrogenase 1 (ALDH1) is a potential marker for cancer stem cells in embryonal rhabdomyosarcoma. PloS one. (2015) 10: e0125454.
(66)         Han L, Shi S, Gong T, Zhang Z and Sun X. Cancer stem cells: therapeutic implications and perspectives in cancer therapy. Acta Pharm. Sin B . (2013) 3: 65-75.
(67)         Vassalli G. Aldehyde dehydrogenases: Not just markers, but functional regulators of stem cells. Stem Cells Int. (2019) 2019.
(68)         Kohn FR, Landkamer GJ, Manthey CL, Ramsay NK and Sladek NE. Effect of aldehyde dehydrogenase inhibitors on the ex vivo sensitivity of human multipotent and committed hematopoietic progenitor cells and malignant blood cells to oxazaphosphorines. Cancer Res. (1987) 47: 3180-5.
(69)         Landen CN, Goodman B, Katre AA, Steg AD, Nick AM, Stone RL, Miller LD, Mejia PV, Jennings NB and Gershenson DM. Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol. Cancer Ther. (2010) 9: 3186-99.
(70)         Dean M. ABC transporters, drug resistance, and cancer stem cells. J. Mammary Gland Biol. Neoplasia. (2009) 14: 3-9.
(71)         Kim JB, Ko E, Han W, Shin I, Park SY and Noh D-Y. Berberine diminishes the side population and ABCG2 transporter expression in MCF-7 breast cancer cells. Planta medica. (2008) 74: 1693-700.
(72)         Gu Y-Y, Liu L-P, Qin J, Zhang M, Chen Y, Wang D, Li Z, Tang J-Z and Mo S-L. Baicalein decreases side population proportion via inhibition of ABCG2 in multiple myeloma cell line RPMI 8226 in vitro. Fitoterapia. (2014) 94: 21-8.
(73)         Barrallo-Gimeno A and Nieto MA. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development. (2005) 132: 3151-61.
(74)         Wang Y, Shi J, Chai K, Ying X and P Zhou B. The role of Snail in EMT and tumorigenesis. Curr. Cancer Drug Targets (2013) 13: 963-72.
(75)         Kong D, Li Y, Wang Z and Sarkar F. Cancer stem cells and epithelial-to-mesenchymal transition (EMT)-phenotypic cells: are they cousins or twins? Cancers. (2011) 3: 716-29.
(76)         Tallman MS, Andersen JW, Schiffer CA, Appelbaum FR, Feusner JH, Ogden A, Shepherd L, Willman C, Bloomfield CD and Rowe JM. All-trans-retinoic acid in acute promyelocytic leukemia. New. Engl. J. Med. (1997) 337: 1021-8.
(77)         Ginestier C, Wicinski J, Cervera N, Monville F, Finetti P, Bertucci F, Wicha MS, Birnbaum D and Charafe-Jauffret E. Retinoid signaling regulates breast cancer stem cell differentiation. Cell Cycle. (2009) 8: 3297-302.
(78)         Nguyen PH, Giraud J, Staedel C, Chambonnier L, Dubus P, Chevret E, Bœuf H, Gauthereau X, Rousseau B and Fevre M. All-trans retinoic acid targets gastric cancer stem cells and inhibits patient-derived gastric carcinoma tumor growth. Oncogene. (2016) 35: 5619.
(79)         Bouriez D, Giraud J, Gronnier C and Varon C. Efficiency of All-Trans Retinoic Acid on Gastric Cancer: A Narrative Literature Review. Int. J. Mol. Sci. (2018) 19: 3388.
(80)         Lee HA, Park S and Kim Y. Effect of β-carotene on cancer cell stemness and differentiation in SK-N-BE (2) C neuroblastoma cells. Oncol. Rep. (2013) 30: 1869-77.
(81)         Gocek E and Studzinski GP. Vitamin D and differentiation in cancer. Crit. Rev. Clin. Lab. Sci. (2009) 46: 190-209.
(82)         Pálmer HG, González-Sancho JM, Espada J, Berciano MT, Puig I, Baulida J, Quintanilla M, Cano A, de Herreros AG and Lafarga M. Vitamin D3 promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of β-catenin signaling. J. Cell Biol. (2001) 154: 369-88.
(83)         So JY, Lee HJ, Smolarek AK, Paul S, Wang C-X, Maehr H, Uskokovic M, Zheng X, Conney AH and Cai L. A novel oemini vitamin D analog represses the expression of a stem cell marker CD44 in breast cancer. Mol. Pharmacol. (2011) 79: 360-7.
(84)         Takebe N, Harris PJ, Warren RQ and Ivy SP. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat. Rev. Clin. Oncol. (2011) 8: 97.
(85)         Karamboulas C and Ailles L. Developmental signaling pathways in cancer stem cells of solid tumors. Biochim. Biophys. Acta. (2013) 1830: 2481-95.
(86)         Kovalenko PL, Zhang Z, Cui M, Clinton SK and Fleet JC. 1, 25 dihydroxyvitamin D-mediated orchestration of anticancer, transcript-level effects in the immortalized, non-transformed prostate epithelial cell line, RWPE1. BMC genomics. (2010) 11: 26.
(87)         Bijlsma MF, Spek CA, Zivkovic D, van de Water S, Rezaee F and Peppelenbosch MP. Repression of smoothened by patched-dependent (pro-) vitamin D3 secretion. PLoS Biol. (2006) 4: e232.
(88)         Tang JY, Xiao TZ, Oda Y, Chang KS, Shpall E, Wu A, So P-L, Hebert J, Bikle D and Epstein EH. Vitamin D3 inhibits hedgehog signaling and proliferation in murine Basal cell carcinomas. Cancer Prev. Res. (2011) 4: 744-51.
(89)         Larriba M, González-Sancho J, Barbáchano A, Niell N, Ferrer-Mayorga G and Muñoz A. Vitamin D is a multilevel repressor of Wnt/b-catenin signaling in cancer cells. Cancers. (2013) 5: 1242-60.
(90)         So JY and Suh N. Targeting cancer stem cells in solid tumors by vitamin D. J. Steroid Biochem. Mol. Biol. (2015) 148: 79-85.
(91)         Li M-X, Li L-F, Zhang L, Xiao Z-G, Shen J, Hu W, Zeng Q and Cho C-H. Vitamin D and cancer stem cells in the gastrointestinal tract. Curr. Med. Chem.  (2017) 24: 918-27.