Effect of Zebularine on p16INK4a, p14ARF, p15INK4b, and DNA Methyltransferase 1 Gene Expression, Cell Growth Inhibition, and Apoptosis Induction in Human Hepatocellular Carcinoma PLC/PRF5 and Pancreatic Cancer PA-TU-8902 Cell Lines

Document Type : Research article

Authors

1 Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.

2 Student of Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran.

Abstract

Tumorigenesis must be understood as a summary of altered genetic and genomic changes
resulting in the inactivation of tumor suppressor genes (TSGs). One of the characterizations of
epigenetic alterations is DNA methylation. Epigenetic alteration of the p16INK4a, p14ARF,
p15INK4b
, and DNA methyltransferase 1 gene (DNMT1) expression occurs in hepatocellular
carcinoma (HCC) and pancreatic cancer frequently. DNA methyltransferase inhibitors (DNMTIs),
such as zebularine, play a signifcant effect on the demethylation and reactivation of TSGs. This
study aimed to investigate the effect of zebularine on p16INK4a, p14ARF, p15INK4b, and DNA
methyltransferase 1 gene expression, cell growth inhibition, and apoptosis induction in HCC
PLC/PRF5 and pancreatic cancer PA-TU-8902 cell lines. Both cell lines were cultured and treated
with zebularine at different times. The MTT assay, real-time quantitative reverse-transcription
polymerase chain reaction (qRT-PCR), and flow cytometry were used to determine cell viability,
gene expression, and apoptotic cells, respectively. The result indicated that zebularine inhibited
cell growth of both cell lines signifcantly as time- and dose-dependent manner (
P < 0.007). The
agent induced signifcant down-regulation of DNMT1 and up-regulation of p16INK4a, p14ARF,
p15INK4b (
P < 0.028). Besides, it had a signifcant apoptosis effect on both cell lines (P < 0.001).
This compound had a strong signifcant effect on PLC/PRF5 in comparison to PA-TU-8902 cells.
Concluding, zebularine inhibited PLC/PRF5 and PA-TU-8902 cell growth and induced apoptosis
in these cell lines. The most likely mechanism underlying the zebularine played its role involves
down-regulation of DNMT1 and up-regulation of p16INK4a, p14ARF, and p15INK4b genes.

Graphical Abstract

Effect of Zebularine on p16INK4a, p14ARF, p15INK4b, and DNA Methyltransferase 1 Gene Expression, Cell Growth Inhibition, and Apoptosis Induction in Human Hepatocellular Carcinoma PLC/PRF5 and Pancreatic Cancer PA-TU-8902 Cell Lines

Keywords


(1) Kamisawa T, Wood LD, Itoi T, Takaori K. Pancreatic cancer. The Lancet 2016; 388(10039):73-85.
(2) Thomas MB, Jaffe D, Choti MM, Belghiti J, Curley S, Fong Y, Gores G, Kerlan R, Merle P, O'Neil B. Hepatocellular carcinoma: consensus recommendations of the national cancer institute clinical trials planning meeting. J Clin Oncol 2010; 28(25):3994.
(3) Tischoff I, Tannapfel A. DNA methylation in hepatocellular carcinoma. World journal of gastroenterology: WJG 2008; 14(11):1741.
(4) Tannapfel A, Busse C, Weinans L, Benicke M, Katalinic A, Geißler F, Hauss J, Wittekind C. INK4a-ARF alterations and p53 mutations in hepatocellular carcinomas. Oncogene 2001; 20(48):7104.
(5) Zhang Z, Rosen DG, Yao JL, Huang J, Liu J. Expression of p14 ARF, p15 INK4b, p16 INK4a, and DCR2 increases during prostate cancer progression. Mod Pathol 2006; 19(10):1339.
(6) Li G, Ji Y, Liu C, Li J, Zhou Y. Reduced levels of p15INK4b, p16INK4a, p21cip1 and p27kip1 in pancreatic carcinoma. Mol Med Report 2012; 5(4):1106-10.
(7) Furonaka O, Takeshima Y, Awaya H, Ishida H, Kohno N, Inai K. Aberrant methylation of p14ARF, p15INK4b and p16INK4a genes and location of the primary site in pulmonary squamous cell carcinoma. Pathol Int 2004; 54(8):549-55.
(8) Jha AK, Nikbakht M, Jain V, Capalash N, Kaur J. p16INK4a and p15INK4b gene promoter methylation in cervical cancer patients. Oncol Lett 2012; 3(6):1331-5.
(9) Konishi N, Nakamura M, Kishi M, Nishimine M, Ishida E, Shimada K. DNA hypermethylation status of multiple genes in prostate adenocarcinomas. Jap J Cancer Res 2002; 93(7):767-73.
(10) Bai P, Xiao X, Zou J, Cui L, Bui Nguyen TM, Liu J, Xiao J, Chang B, Wu J, Wang H. Expression of p14ARF, p15INK4b, p16INK4a and skp2 increases during esophageal squamous cell cancer progression. Exp Ther Med 2012; 3(6):1026-32.
(11) Hirasawa Y, Arai M, Imazeki F, Tada M, Mikata R, Fukai K, Miyazaki M, Ochiai T, Saisho H, Yokosuka O. Methylation status of genes upregulated by demethylating agent 5-aza-2′-deoxycytidine in hepatocellular carcinoma. Oncology 2006; 71(1-2):77-85.
(12) Nakamura K, Aizawa K, Nakabayashi K, Kato N, Yamauchi J, Hata K, Tanoue A. DNA methyltransferase inhibitor zebularine inhibits human hepatic carcinoma cells proliferation and induces apoptosis. PLoS One 2013; 8(1):e54036.
(13) Andersen JB, Factor VM, Marquardt JU, Raggi C, Lee Y-H, Seo D, Conner EA, Thorgeirsson SS. An integrated genomic and epigenomic approach predicts therapeutic response to zebularine in human liver cancer. Sci Transl Med 2010; 2(54):54ra77-54ra77.
(14) Neureiter D, Zopf S, Leu T, Dietze O, Hauser-Kronberger C, Hahn EG, Herold C, Ocker M. Apoptosis, proliferation and differentiation patterns are influenced by Zebularine and SAHA in pancreatic cancer models. Scand J Gastroenterol 2007; 42(1):103-16.
(15) Yoo CB, Valente R, Congiatu C, Gavazza F, Angel A, Siddiqui MA, Jones PA, McGuigan C, Marquez VE. Activation of p16 gene silenced by DNA methylation in cancer cells by phosphoramidate derivatives of 2′-deoxyzebularine. J Med Chem 2008; 51(23):7593-601.
(16) Valenzuela MMA, Neidigh JW, Wall NR. Antimetabolite treatment for pancreatic cancer. Chemotherapy 2014; 3(3).
(17) Cheng JC, Yoo CB, Weisenberger DJ, Chuang J, Wozniak C, Liang G. Preferential response of cancer cells to zebularine. Cancer Cell 2004; 6(2):151-8.
(18) Lassacher A, Heitzer E, Kerl H, Wolf P. p14ARF hypermethylation is common but INK4a-ARF locus or p53 mutations are rare in Merkel cell carcinoma. J Invest Dermatol 2008; 128(7):1788-96.
(19) Scott SA, Lakshimikuttysamma A, Sheridan DP, Sanche SE, Geyer CR, DeCoteau JF. Zebularine inhibits human acute myeloid leukemia cell growth in vitro in association with p15INK4B demethylation and reexpression. Exp Hematol 2007; 35(2):263-73.
(20) Cheng JC, Matsen CB, Gonzales FA, Ye W, Greer S, Marquez VE, Jones PA, Selker EU. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J Natl Cancer Inst 2003; 95(5):399-409.
(21) Liu LH, Xiao WH, Liu WW. Effect of 5-2Aza-2'-deoxycytidine on the P16 tumor suppressor gene in hepatocellular carcinoma cell line HepG2. World J Gastroenterol 2001; 7(1):131.
(22) Maeta Y, Shiota G, Okano J-i, Murawaki Y. Effect of promoter methylation of the p16 gene on phosphorylation of retinoblastoma gene product and growth of hepatocellular carcinoma cells. Tumor Biol 2005; 26(6):300-5.
(23) Sanaei M, Kavoosi F. Effects of 5-aza-2'-deoxycytidine and Valproic Acid on Epigenetic-modifying DNMT1 Gene Expression, Apoptosis Induction and Cell Viability in Hepatocellular Carcinoma WCH-17 cell line. Iranian Journal of Pediatric Hematology & Oncology 2019; 9(2).
(24) Zahir NV, Nakhjavani M, Hajian P, Shirazi FH, Mirzaei H. Evaluation of silibinin effects on the viability of HepG2 (human hepatocellular liver carcinoma) and HUVEC (human umbilical vein endothelial) cell lines. Iranian journal of pharmaceutical research: IJPR 2018; 17(1):261.
(25) Nakhjavani M, Palethorpe HM, Tomita Y, Smith E, Price TJ, Yool AJ, Pei JV, Townsend AR, Hardingham JE. Stereoselective Anti-Cancer Activities of Ginsenoside Rg3 on Triple Negative Breast Cancer Cell Models. Pharmaceuticals 2019; 12(3):117.
(26) Sanaei M, Kavoosi F, Roustazadeh A, Golestan F. Effect of genistein in comparison with trichostatin a on reactivation of DNMTs genes in hepatocellular carcinoma. Journal of clinical and translational hepatology. 2018; 6(2):141.
(27) Sakuma K, Chong JM, Sudo M, Ushiku T, Inoue Y, Shibahara J. High‐density methylation of p14ARF and p16INK4A in Epstein‐Barr virus–associated gastric carcinoma. Int J Cancer 2004; 112(2):273-8.
(28) Li G, Ji Y, Liu C, Li J, Zhou Y. Reduced levels of p15INK4b, p16INK4a, p21cip1 and p27kip1 in pancreatic carcinoma. Mol Med Report 2012; 5(4):1106-10.
(29) Saegusa M, Machida B D, Okayasu I. Possible associations among expression of p14ARF, p16INK4a, p21WAF1/CIP1, p27KIP1, and p53 accumulation and the balance of apoptosis and cell proliferation in ovarian carcinomas. Cancer: Interdisciplinary International Journal of the American Cancer Society 2001; 92(5):1177-89.
(30) Sanaei M, Kavoosi F, Roustazadeh A, Golestan F. Effect of genistein in comparison with trichostatin a on reactivation of DNMTs genes in hepatocellular carcinoma. Journal of clinical and translational hepatology 2018; 6(2):141.
(31) Park M-T, Lee S-J. Cell cycle and cancer. J Biochem Mol Biol 2003;36(1):60-5.
(32) Wong IH, Ng MH, Huang DP, Lee JC. Aberrant p15 promoter methylation in adult and childhood acute leukemias of nearly all morphologic subtypes: potential prognostic implications. Blood 2000;95(6):1942-9.
(33) Chim C, Liang R, Tam C, Kwong Y. Methylation of p15 and p16 genes in acute promyelocytic leukemia: potential diagnostic and prognostic significance. J Clin Oncol 2001;19(7):2033-40.
(34) Yagi S, Oda-Sato E, Uehara I, Asano Y, Nakajima W, Takeshita T, Tanaka N.  5-Aza-2′-deoxycytidine restores proapoptotic function of p53 in cancer cells resistant to p53-induced apoptosis. Cancer Invest 2008;26(7):680-8.
(35) Venza M, Visalli M, Biondo C, Lentini M, Catalano T, Teti D, Venza I. Epigenetic regulation of p14ARF and p16INK4A expression in cutaneous and uveal melanoma. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 2015;1849(3):247-56.
(36) Zhu W-G, Hileman T, Ke Y, Wang P, Lu S, Duan W, Dai Z, Tong T, Villalona-Calero MA, Plass C. 5-aza-2′-deoxycytidine activates the p53/p21Waf1/Cip1 pathway to inhibit cell proliferation. J Biol Chem 2004;279(15):15161-6.
(37) Ling Y, Zhang C, Xu Y, Zhu J, Zhu C, Lu M. Promoter methylation‑associated silencing of p27kip1 gene with metastasis in esophageal squamous cell carcinoma. Mol Med Report 2014;9(3):1075-9.
(38) Cánepa ET, Scassa ME, Ceruti JM, Marazita MC, Carcagno AL, Sirkin PF, Ogara MF. INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life 2007;59(7):419-26.
(39) C. Besson A, Dowdy SF, Roberts JM. CDK inhibitors: cell cycle regulators and beyond. Dev Cell 2008;14(2):159-69.
(40) Jiemjit A, Fandy T, Carraway H, Bailey K, Baylin S, Herman J, Gore S. p21 WAF1/CIP1 induction by 5-azacytosine nucleosides requires DNA damage. Oncogene 2008;27(25):3615.
(39) Sato N, Matsubayashi H, Abe T, Fukushima N, Goggins M. Epigenetic down-regulation of CDKN1C/p57KIP2 in pancreatic ductal neoplasms identified by gene expression profiling. Clin Cancer Res 2005;11(13):4681-8.
(41) Wang P, Yan Y, Yu W, Zhang H. Role of ten‐eleven translocation proteins and 5‐hydroxymethylcytosine in hepatocellular carcinoma. Cell Prolif 2019:e12626.