Association between Serum Vitamin D Concentration Status and Matrix Metalloproteinase-9 in Patients Undergoing Elective Percutaneous Coronary Intervention

Document Type : Research article


Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.


Cardiovascular diseases (CVD) have become increasingly life-threatening during recent decades. Several studies have shown that matrix metalloproteinase-9 (MMP-9) plays an important role in the process of atherosclerosis and heart remodeling. On the other hand, Vitamin D deficiency has been recognized as a risk factor for CVD. According to the prevalence of vitamin D deficiency in our country, Iran, we aimed to evaluate the relationship between vitamin D status and the level of MMP-9 in patients undergoing percutaneous coronary intervention (PCI). In this prospective cross-sectional study, patients who were candidates for elective coronary angioplasty were included. Baseline serum MMP-9 and vitamin D levels were measured before intervention. Patients were categorized into three groups: Vitamin D-severely deficient (≤ 10 ng/ml), vitamin D-moderately deficient (11-20 ng/ml), and vitamin D-insufficient/sufficient (> 21 ng/ml). Totally, 150 patients were assessed. The analysis showed that serum MMP-9 levels were higher in patients with lower vitamin-D concentrations. A significant inverse correlation was found between MMP-9 concentration and 25(OH) vitamin D level (P = 0.039). According to our results, it may be concluded that low levels of vitamin D may lead to more vulnerable atherosclerotic plaques and consequently more cardiovascular adverse effects in post-PCI patients.

Graphical Abstract

Association between Serum Vitamin D Concentration Status and Matrix Metalloproteinase-9 in Patients Undergoing Elective Percutaneous Coronary Intervention


  1. Cao BBray FIlbawi ASoerjomataram I. Effect on longevity of one-third reduction in premature mortality from non-communicable diseases by 2030: a global analysis of the Sustainable Development Goal health target. Lancet Glob Health.2018;6(12):e1288-e1296.
  2. Pagidipati NJ, Gaziano TA. Estimating Deaths From Cardiovascular Disease: A Review of Global Methodologies of Mortality Measurement. Circulation. 2013;127(6):749-56.
  3. Lusis AJ. Atherosclerosis. Nature. 2000;407:233.
  4. Frostegård J. Immunity, atherosclerosis and cardiovascular disease. BMC Medicine. 2013;11:117-.
  5. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317.
  6. Foroughinia F, Salamzadeh J, Namazi MH. Protection from procedural myocardial injury by omega-3 polyunsaturated fatty acids (PUFAs): is related with lower levels of creatine kinase-MB (CK-MB) and troponin I? Cardiovasc Ther. 2013;31(5):268-73.
  7. Foroughinia F, Movahed Nouri B, Kojuri J, Ostovan MA. Impact of Omega-3 Supplementation on High Sensitive C-Reactive Protein Level and 30-Day Major Adverse Cardiac Events After the Implementation of Coronary Stent in Patients with Chronic Kidney Disease: A Randomized Clinical Study. Adv Pharm Bull. 2018;8(3):471-8.
  8. Mulvihill N, Foley J. Inflammation in acute coronary syndromes. Heart. 2002;87(3):201-4.
  9. Luttun A, Dewerchin M, Collen D, Carmeliet P. The role of proteinases in angiogenesis, heart development, restenosis, atherosclerosis, myocardial ischemia, and stroke: insights from genetic studies. Curr Atheroscler Rep. 2000;2(5):407-16.
  10. Newby AC. Metalloproteinases promote plaque rupture and myocardial infarction: A persuasive concept waiting for clinical translation. Matrix Biol. 2015;44-46:157-66.
  11. Newby AC. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev. 2005;85(1):1-31.
  12. Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol. 2002;37(6):375-536.
  13. Van Doren SR. Matrix metalloproteinase interactions with collagen and elastin. Matrix Biol. 2015;44-46:224-31.
  14. Inokubo Y, Hanada H, Ishizaka H, Fukushi T, Kamada T, Okumura K. Plasma levels of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 are increased in the coronary circulation in patients with acute coronary syndrome. Am Heart J. 2001;141(2):211-7.
  15. Pleva L, Kusnierova P, Plevova P, Zapletalova J, Karpisek M, Faldynova L, Kovarova P, Kukla P. Increased levels of MMP-3, MMP-9 and MPO represent predictors of in-stent restenosis, while increased levels of ADMA, LCAT, ApoE and ApoD predict bare metal stent patency. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015;159(4):586-94.
  16. Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, Lieben L, Mathieu C, Demay M. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev. 2008;29(6):726-76.
  17. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266-81.
  18. Nemerovski CW, Dorsch MP, Simpson RU, Bone HG, Aaronson KD, Bleske BE. Vitamin D and cardiovascular disease. Pharmacotherapy. 2009;29(6):691-708.
  19. Kienreich K, Tomaschitz A, Verheyen N, Pieber T, Gaksch M, Grubler MR, Pilz S. Vitamin D and cardiovascular disease. Nutrients. 2013;5(8):3005-21.
  20. Kim SH, Baek MS, Yoon DS, Park JS, Yoon BW, Oh BS, Park J, Kim HJ. Vitamin D Inhibits Expression and Activity of Matrix Metalloproteinase in Human Lung Fibroblasts (HFL-1) Cells. Tuberc Respir Dis (Seoul). 2014;77(2):73-80.
  21. Giovannucci E, Liu Y, Hollis BW, Rimm EB. 25-hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch Intern Med. 2008;168(11):1174-80.
  22. Dobnig H, Pilz S, Scharnagl H, Renner W, Seelhorst U, Wellnitz B, Kinkeldei J, Boehm BO, Weihrauch G, Maerz W. Independent association of low serum 25-hydroxyvitamin d and 1,25-dihydroxyvitamin d levels with all-cause and cardiovascular mortality. Arch Intern Med. 2008;168(12):1340-9.
  23. Kienreich K, Tomaschitz A, Verheyen N, Pieber T, Gaksch M, Grübler MR, Pilz S. Vitamin D and cardiovascular disease. Nutrients. 2013;5(8):3005-21.
  24. Wang TJ, Pencina MJ, Booth SL, Jacques PF, Ingelsson E, Lanier K, Benjamin EJ, D’Agostino RB, Wolf M, Vasan RS. Vitamin D deficiency and risk of cardiovascular disease. Circulation. 2008;117(4):503-11.
  25. Hsia J, Heiss G, Ren H, Allison M, Dolan NC, Greenland P, Heckbert SR, Johnson KC, Manson JE, Sidney S, Trevisan M. Calcium/vitamin D supplementation and cardiovascular events. Circulation. 2007;115(7):846-54.
  26. LaCroix AZ, Kotchen J, Anderson G, Brzyski R, Cauley JA, Cummings SR, Gass M, Johnson KC, Ko M, Larson J, Manson JE, Stefanick ML, Wactawski-Wende J. Calcium plus vitamin D supplementation and mortality in postmenopausal women: the Women's Health Initiative calcium-vitamin D randomized controlled trial. J Gerontol A Biol Sci Med Sci. 2009;64(5):559-67.
  27. Wang L, Manson JE, Song Y, Sesso HD. Systematic review: Vitamin D and calcium supplementation in prevention of cardiovascular events. Ann Intern Med. 2010;152(5):315-23.
  28. Avenell A, MacLennan GS, Jenkinson DJ, McPherson GC, McDonald AM, Pant PR, Grant AM, Campbell MK, Anderson FH, Cooper C, Francis RM, Gillespie WJ, Robinson CM, Torgerson DJ, Wallace WA. Long-term follow-up for mortality and cancer in a randomized placebo-controlled trial of vitamin D(3) and/or calcium (RECORD trial). J Clin Endocrinol Metab. 2012;97(2):614-22.
  29. Autier P, Gandini S. Vitamin D supplementation and total mortality: a meta-analysis of randomized controlled trials. Arch Intern Med. 2007;167(16):1730-7.
  30. Khalili H, Talasaz AH, Salarifar M. Serum vitamin D concentration status and its correlation with early biomarkers of remodeling following acute myocardial infarction. Clin Res Cardiol. 2012;101(5):321-7.
  31. Moradi N, Fadaei R, Ahmadi R, Mohammad MH, Shahmohamadnejad S, Tavakoli-Yaraki M, Aghajani H, Fallah S. Role of serum MMP-9 levels and vitamin D receptor polymorphisms in the susceptibility to coronary artery disease: An association study in Iranian population. Gene. 2017;628:295-300.
  32. Timms PM, Mannan N, Hitman GA, Noonan K, Mills PG, Syndercombe-Court D, Aganna E, Price CP, Boucher BJ. Circulating MMP9, vitamin D and variation in the TIMP-1 response with VDR genotype: mechanisms for inflammatory damage in chronic disorders? Qjm. 2002;95(12):787-96.
  33. Wasse H, Cardarelli F, De Staercke C, Hooper C, Veledar E, Guessous I. 25-hydroxyvitamin D concentration is inversely associated with serum MMP-9 in a cross-sectional study of African American ESRD patients. BMC nephrology. 2011;12(1):24.
  34. Lopez-Lopez N, Gonzalez-Curiel I, Trevino-Santa Cruz MB, Rivas-Santiago B, Trujillo-Paez V, Enciso-Moreno JA, Serrano CJ. Expression and vitamin D-mediated regulation of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in healthy skin and in diabetic foot ulcers. Arch Dermatol Res. 2014;306(9):809-21.
  35. Anand SP, Selvaraj P. Effect of 1, 25 dihydroxyvitamin D(3) on matrix metalloproteinases MMP-7, MMP-9 and the inhibitor TIMP-1 in pulmonary tuberculosis. Clin Immunol. 2009;133(1):126-31.
  36. Wasse H, Cardarelli F, De Staercke C, Hooper C, Veledar E, Guessous I. 25-hydroxyvitamin D concentration is inversely associated with serum MMP-9 in a cross-sectional study of African American ESRD patients. BMC Nephrol. 2011;12:24.
  37. Wang LF, Tai CF, Chien CY, Chiang FY, Chen JY. Vitamin D decreases the secretion of matrix metalloproteinase-2 and matrix metalloproteinase-9 in fibroblasts derived from Taiwanese patients with chronic rhinosinusitis with nasal polyposis. Kaohsiung J Med Sci. 2015;31(5):235-40.
  38. Mittelstadt ML, Patel RC. AP-1 mediated transcriptional repression of matrix metalloproteinase-9 by recruitment of histone deacetylase 1 in response to interferon β. PloS one. 2012;7(8):e42152.
  39. Xiao XH, Liu ZL, Wang H, Sun Q, Li WH, Yang GH, Liu QY. Effects of vitamin D receptor gene polymorphisms on susceptibility to type 1 diabetes mellitus. Chin Med Sci J. 2006;21(2):95-8.
  40. Lahdentausta L, Leskela J, Winkelmann A, Tervahartiala T, Sorsa T, Pesonen E, Pussinen PJ. Serum MMP-9 Diagnostics, Prognostics, and Activation in Acute Coronary Syndrome and Its Recurrence. J Cardiovasc Transl Res. 2018;11(3):210-20.
  41. Kelly D, Cockerill G, Ng LL, Thompson M, Khan S, Samani NJ, Squire IB. Plasma matrix metalloproteinase-9 and left ventricular remodelling after acute myocardial infarction in man: a prospective cohort study. Eur Heart J. 2007;28(6):711-8.
  42. Sundström J, Evans JC, Benjamin EJ, Levy D, Larson MG, Sawyer DB,  Siwik DAColucci WSSutherland PWilson PWVasan RS. Relations of plasma matrix metalloproteinase-9 to clinical cardiovascular risk factors and echocardiographic left ventricular measures: The Framingham Heart Study. Circulation.2004;109(23):2850-6.