Approaches for the Treatment of SARS-CoV-2 Infection: A Pharmacologic View and Literature Review

Document Type : Review Paper

Authors

1 Biosun Pharmed Factory, Barkat Pharmaceutical Group, Tehran, Iran.

2 Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

3 Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Abstract

The emergence of a novel Coronavirus disease (COVID-19) inducing acute respiratory distress syndrome (ARDS) was identified in Hubei province of China in December 2019 and rapidly spread worldwide as pandemic and became a public health concern. COVID-19 disease is caused by a new virus known as SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), which has recently offered many challenges and efforts to identify effective drugs for its prevention and treatment. Currently, there is no proven effective approach and medication against this virus. Quickly expanding clinical trials and studies on Coronavirus disease 2019 increase our knowledge regarding SARS-CoV-2 virus and introduce several potential drugs targeting virus moiety or host cell elements. Overall, 3 stages were suggested for SARS-CoV-2 infection according to the disease severity, clinical manifestations, and treatment outcomes, including mild, moderate, and severe. This review aimed to classify and summarize several medications and potential therapies according to the disease 3 stages; however, it is worth noting that no medication and therapy has been effective so far.
The emergence of a novel Coronavirus disease (COVID-19) inducing acute respiratory
distress syndrome (ARDS) was identified in Hubei province of China in December 2019 and
rapidly spread worldwide as pandemic and became a public health concern. COVID-19 disease is
caused by a new virus known as SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus
2), which has recently offered many challenges and efforts to identify effective drugs for its
prevention and treatment. Currently, there is no proven effective approach and medication against
this virus. Quickly expanding clinical trials and studies on Coronavirus disease 2019 increase
our knowledge regarding SARS-CoV-2 virus and introduce several potential drugs targeting
virus moiety or host cell elements. Overall, 3 stages were suggested for SARS-CoV-2 infection
according to the disease severity, clinical manifestations, and treatment outcomes, including
mild, moderate, and severe. This review aimed to classify and summarize several medications
and potential therapies according to the disease 3 stages; however, it is worth noting that no
medication and therapy has been effective so far.

Graphical Abstract

Approaches for the Treatment of SARS-CoV-2 Infection: A Pharmacologic View and Literature Review

Keywords


(1)         Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. Nature (2020) 2020.01.22.914952.
(2)         Coronavirus disease 2019 (COVID-19): Situation Report - 94 (23 April 2020) - World Health Organization.
(3)         Rajgor DD, Lee H, Archuleta S, Bagdasarian N, and Quek SC. The many estimates of the COVID-19 case fatality rate. lancet  Infect Dis (2020) 20 (7):776-777.
(4)         Zhou G and Zhao Q. Perspectives on therapeutic neutralizing antibodies against the Novel Coronavirus SARS-CoV-2. Int J Bio Sci (2020) 16: 1718–1723.
(5)         Bosch BJ, van der Zee R, de Haan CAM, and Rottier PJM. The Coronavirus Spike Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex. J Virol (2003) 77: 8801–8811.
(6)         Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res (2020) 30: 269–271.
(7)         Omrani AS, Saad MM, Baig K, Bahloul A, Abdul-Matin M, Alaidaroos AY, Almakhlafi GA, Albarrak MM, Memish ZA, Albarrak AM.  Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: A retrospective cohort study. Lancet Infect Dis (2014) 14: 1090–1095.
(8)         Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, Xu Y, Li M, Li X, Zheng M, ChenL, Li H.  Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B (2020) 10 (5): 766-788.
(9)         Siddiqi HK and Mehra MR. COVID-19 Illness in Native and Immunosuppressed States: A Clinical-Therapeutic Staging Proposal. J Hear Lung Transplant (2020) 39: 405–407.
(10)       Li T, Cao W, Liu X, Bai T, Fan H, Hong K, Song H, Han Y, Lin L, Ruan L. High-Dose Intravenous Immunoglobulin as a Therapeutic Option for Deteriorating Patients With Coronavirus Disease 2019. Open Forum Infect Dis (2020) 7 (3).
(11)       Smith T, Bushek J, LeClaire A, Prosser T. COVID-19 Drug Therapy. Elsevier updated April 3, 2020.
(12)       Haładyj E, Sikora M, Felis-Giemza A, and Olesinska M. Antimalarials - are they effective and safe in rheumatic diseases? Reumatol Clin (2018) 56: 164–173.
(13)       Taherian E, Rao A, Malemud CJ, Askari AD. The Biological and Clinical Activity of Anti-Malarial Drugs In Autoimmune Disorders.  Curr Reumatol Rev (2020) 9 (1):45-62.
(14)         Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah NG, Nichol ST. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J (2005) 2: 1–10.
(15)       An N, Chen Y, Wang C, Yang C, Wu Z, Xue J, Ye L, Wang S, Liu HF, Pan O. Chloroquine Autophagic Inhibition Rebalances Th17/Treg-Mediated Immunity and Ameliorates Systemic Lupus Erythematosus. Cell  Physiol Biochem (2017) 44: 412–422.
(16)       Thomé R, Moraes AS, Bombeiro AL, Farias A dos S, Francelin C, da Costa TA, Di Gangi R, dos SantosLMB, de Oliveira ALR, Verinaud L.  Chloroquine Treatment Enhances Regulatory T Cells and Reduces the Severity of Experimental Autoimmune Encephalomyelitis. PLoS One (2013) 8(6): e65913.
(17)       Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, Liu X, Zhao L, Dong E, Song C, Zhan S, Lu R, Li H, Tan W, Liu D.   In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin Infect Dis (2020) 71 (15): 732-739.
(18)       Gautret P, Lagier J-C, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE, Dupont HT, Honoré S, Colson P, Chabrière E, La Scola B, Rolain JM, Brouqui P, Raoult D.  Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents (2020) 105949.
(19)       Gao J, Tian Z, and Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. BioSci Trends (2020) 14:  2020.01047.
(20)       Pourdowlat G, Panahi P, Pooransari P, and Ghorbani F. Prophylactic Recommendation for Healthcare Workers during COVID-19 Pandemic. Adv J Emerg Med (2020) 4: 1–2.
(21)       Jie Z, He H, Xi H, Zhi ZZ-ZJHHHXZ. Expert consensus on chloroquine phosphate for the treatment of novel coronavirus pneumonia. Prime Pubmed (2020) 43: e019.
(22)       Assessment of Evidence for COVID-19-Related Treatments: Updated 5/13/2020.
(23)       Molina JM, Delaugerre C, Le Goff J, Mela-Lima B, Ponscarme D, Goldwirt L, de Castro  N. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect (2020) 50 (4).
(24)       Funck-Brentano C and Salem J-E. Chloroquine or hydroxychloroquine for COVID-19: why might they be hazardous? Lancet (2020).
(25)       European Medicine agency: COVID19: chloroquine and hydroxychloroquine only to be used in clinical trials or emergency use programmes. EMA (2020).
(26)       Furuta Y, Gowen B, Takahashi K, Shiraki K, Smee D, Dale LB. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antivi Res (2013) 100 (2).
(27)       Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Japan Acad Ser (2017) 93: 449–463.
(28)       Nicholson EG and Munoz FM. A Review of Therapeutics in Clinical Development for Respiratory Syncytial Virus and Influenza in Children. Clin Ther (2018) 40:  1268–1281.
(29)       Chen C, Zhang Y, Huang J, Yin P, Cheng Z, Wu J, Chen S, Zhang Y, Chen B, Lu M, Luo Y, Ju L, Zhang J, Wang X.  Favipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial. (2020).
(30)       Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J, Liao X, Gu Y, Cai Q, Yang Y, Shen C, Li X, Peng L, Huang D, Zhang J, Zhang S, Wang F, Liu J, Chen L, Chen S, Wang Z, Zhang Z, Cao R, Zhong W, Liu Y, Liu L.  Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study. Engineering (2020).
(31)       COVID-19 Studies from the World Health Organization Database - ClinicalTrials.gov. 2020.
(32)       Shiraki K and Daikoku T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacol Ther (2020) 209: 107512.
(33)       Boriskin Y, Leneva I, Pecheur E-I, and Polyak S. Arbidol: A Broad-Spectrum Antiviral Compound that Blocks Viral Fusion. Curr Med Chem (2008) 15: 997–1005.
(34)       Pécheur E-I, Borisevich V, Halfmann P, Morrey JD, Smee DF, Prichard M, Mire CE, Kawaoka Y, Geisbert TW, Polyak SJ.  The Synthetic Antiviral Drug Arbidol Inhibits Globally Prevalent Pathogenic Viruses. J Virol (2016) 90: 3086–3092.
(35)       Silin D, Lyubomska O, Ershov F, Frolov V, and Kutsyna G. Synthetic and Natural Immunomodulators Acting as Interferon Inducers. Curr Pharm Des (2009) 15: 1238–1247.
(36)       Pécheur EI, Lavillette D, Alcaras F, Molle J, Boriskin YS, Roberts M, Cosset FL, Polyak SJ. Biochemical mechanism of hepatitis C virus inhibition by the broad-spectrum antiviral arbidol. Biochemistry (2007) 46: 6050–6059.
(37)       Hulseberg CE, Fénéant L, Szymańska-de Wijs KM, Kessler NP, Nelson EA, Shoemaker CJ, Schmaljohn CS, Polyak SJ, White JM.  Arbidol and Other Low-Molecular-Weight Drugs That Inhibit Lassa and Ebola Viruses. J Virol (2019) 93:e02185-18.
(38)       Dong L, Hu S, and Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther (2020)14: 58–60.
(39)       Xu K, Chen Y, Yuan J, Yi P, Ding C, Wu W, Li Y, Ni Q, Zhou R, Li X, Xu M, Zhang
Y, Zhao H, Zhang X, Yu L, Su J, Lang G, Liu J, Wu X, Guo Y, Tao J, Shi D, Yu L, Cao Q, Ruan B, Liu L, Wang Z, Xu Y, Liu Y, Sheng J, Li L. Clinical Efficacy of Arbidol in Patients with 2019 Novel Coronavirus-Infected Pneumonia: A Retrospective Cohort Study. SSRN Electron J  (2020).
(40)       Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends (2020) 14: 69–71.
(41)       Deng L, Li C, Zeng Q, Liu X, Li X, Zhang H, Hong Z, Xia J. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. J Infect (2020).
(42)       Huang L, Zhang L, Liu Y, Luo R, Zeng L, Telegina I, Vlassov VV.  Arbidol for preventing and treating influenza in adults and children. Cochrane Database Syst Rev (2017).
(43)       Chiou HE, Liu CL, Buttrey MJ, Kuo HP, Liu HW, Kuo HT, Liu HW, Kuo HT, Lu YT.  Adverse effects of ribavirin and outcome in severe acute respiratory syndrome: Experience in two medical centers. Chest (2005) 128: 263–272.
(44)       Chu CM, Cheng CC, Hung FN, Wong MML, Chan H, Chan S, Kao YT, Poon LLM, Wong LP, Guan Y, Peiris JSM, Yuen Y, Yuen KY. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax (2004) 59: 252–256.
(45)       Elfiky AA. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci (2020) 248: 117477.
(46)       Khalili JS, Zhu H, Mak NSA, Yan Y, and Zhu Y. Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID-19. J Med Virol (2020)
10.1002/jmv.25798.  
(47)   Loustaud-Ratti V, Debette-Gratien M,  Jacques J, Alain S,  Marquet P, Sautereau D,  Rousseau A, Carrier P. Ribavirin: Past, present and future. World J Hepatol (2016) 8(2): 123–130.
(48)       Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ,  Tan KS, Wang DY, Yan Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak- A n update on the status. Mil Med Res (2020) 7: 1–10.
(49)       Crommentuyn KML, Kappelhoff BS, Mulder JW, Mairuhu ATA, van Gorp ECM, Meenhorst PL, Huitema ADR, Beijnen JH. Population pharmacokinetics of lopinavir in combination with ritonavir in HIV-1-infected patients. Br J Clin Pharmacol (2005) 60: 378–389.
(50)       Chen YW, Benu YCP, Wong ky. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL ) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000 Res (2020) 9: 129.   
(51)       Xue X, Yu H, Yang H, Xue F, Wu Z, Shen W, Li J, Zhou Z, Ding Y, Zhao Q, Zhang XC, Liao M, Bartlam M, Rao Z.  Structures of Two Coronavirus Main Proteases: Implications for Substrate Binding and Antiviral Drug Design. J Virol (2008) 82: 2515–2527.
(52)       Liu X and Wang XJ. Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. JGG (2020) 47: 119–121.
(53)       Dayer MR, Taleb-Gassabi S, and Dayer MS. Lopinavir; a potent drug against coronavirus infection: Insight from molecular docking study. Arch Clin Infect Dis (2017) 12(4): e13823.
(54)       Lim J, Jeon S, Shin HY, Kim MJ, Seong YM, Lee WJ, Choe KW, Kang YM, Lee B, Park SJ.  Case of the index patient who caused tertiary transmission of coronavirus disease 2019 in Korea: The application of lopinavir/ritonavir for the treatment of COVID-19 pneumonia monitored by quantitative RT-PCR. J Korean Med Sci (2020) 35(6): e79.
(55)       Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, Ruan L, Song B, Cai Y, Wei M, Li X, Xia J, Chen N, Xiang J, Yu T, Bai T, Xie X, Zhang L, Li C, Yuan Y, Chen H, Li H, Huang H, Tu Sh, Gong F, Liu Y, Wei Y, Dong Ch, Zhou F, Gu X, Xu J, Liu Zh, Zhang Y, Li H, Shang L, Wang K, Li K, Zhou X, Dong X, Qu Zh, Lu S, Hu X, Ruan Sh, Luo Sh, Wu J, Peng L, Cheng F, Pan L, Zou J, Jia Ch, Wang J, Liu X, Wang Sh, Wu X, Ge Q, He J, Zhan H, Qiu F, Guo L, Huang Ch, Jaki T, Hayden FG, Horby PW, Zhang D, Wang Ch. A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med (2020) 382: 1787–1799.
(56)       Young BE, Ong SWX, Kalimuddin S, Low JG, Tan SY, Loh J, Ng OT, Marimuthu K, Ang LW, Mak TM, Lau SK, AndersonDE, Chan KS, Tan TY, Ng TY, Cui L, Said Z, Kurupatham L, Chen MC, Chan M, Vasoo S, Wang LF, Tan BH, Lin RTP, Lee VJM, Leo YS, Lye DC.  Epidemiologic Features and Clinical Course of Patients Infected with SARS-CoV-2 in Singapore. JAMA - J Am Med Assoc (2020) 323: 1488–1494.
(57)       Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia.
(58)       Liu Y-J. IPC: Professional Type 1 Interferon-Producing Cells and Plasmacytoid Dendritic Cell Precursors. Annu Rev Immunol (2005) 23: 275–306.
(59)       Schneider WM, Chevillotte D, and Rice CM. Interferon-Stimulated Genes: A Complex Web of Host Defenses. Annu Rev Immunol (2014) 32: 513–545.
(60)       Jakimovski D, Kolb C, Ramanathan M, Zivadinov R, and Weinstock-Guttman B. Interferon β for Multiple Sclerosis. Cold Spring Harb Perspect Med (2018) 8: a032003.
(61)       Minn AJ. Interferons and the Immunogenic Effects of Cancer Therapy. Trends Immunol Elsevier (2015) 36: 725–737.
(62)       Sallard E, Lescure FX, Yazdanpanah Y, Mentre F, and Peiffer-Smadja N. Type 1 interferons as a potential treatment against COVID-19. Antiviral Res (2020) 178: 104791.
(63)       Bellingan G, Maksimow M, Howell DC, Stotz M, Beale R, Beatty M, Walsh T, Binning A, Davidson A, Kuper M, Shah S, Cooper J, Waris M, Yegutkin GG, Jalkanen J, Salmi M, Piippo I, Jalkanen M, Montgomery H, Jalkanen S.  The effect of intravenous interferon-beta-1a (FP-1201) on lung CD73 expression and on acute respiratory distress syndrome mortality: An open-label study. Lancet Respir Med (2020) 2: 98–107.
 (64)      Channappanavar R, Fehr AR, Zheng J, Wohlford-Lenane C, Abrahante JE, Mack M,
Sompallae R, McCray PB, Meyerholz DK, Perlman S.  IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J Clin Invest (2019) 129: 3625–3639.
(65)       Kopecky-Bromberg SA, Martínez-Sobrido L, Frieman M, Baric RA, and Palese P. Severe Acute Respiratory Syndrome Coronavirus Open Reading Frame (ORF) 3b, ORF 6, and Nucleocapsid Proteins Function as Interferon Antagonists. J Virol (2007) 81: 548–557.
(66)         Lokugamage KG, Schindewolf C, Menachery VD . SARS-CoV-2 sensitive to type I interferon pretreatment. bioRxiv (2020).
(67)      Shen KL and Yang YH. Diagnosis and treatment of 2019 novel coronavirus infection in children: a pressing issue. World J  Pediatr (2020) 1–3.
(68)       Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z,  Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu Sh, Zhang Yi, Chen H, Cao B.  Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet (2020) 395: 1054–1062.
(69)       Dastan F, Alireza Nadji S, Saffaei A, Marjani M, Moniri A, Jamaati H, Hashemian SMR,  Baghaei Shiva P, Abedini A, Varahram M, Yousefian S, Tabarsi P. Subcutaneous administration of Interferon beta-1a for COVID-19: A non-controlled prospective trial. Int. Immunopharmacol. (2020) 85: 106688.
(70)       Bhatti Z and Berenson CS. Adult systemic cat scratch disease associated with therapy for hepatitis C. BMC Infect Dis (2007) 7: 1–4.
(71)       Tran DH, Sugamata R, Hirose T, Suzuki S, Noguchi Y, Sugawara A, Ito F, Yamamoto T, Kawachi Sh, Akagawa KS, Ōmura S, Sunazuka T, Ito N, Mimaki M, Suzuki K. Azithromycin, a 15-membered macrolide antibiotic, inhibits influenza A(H1N1)pdm09 virus infection by interfering with virus internalization process. J Antibiot (Tokyo). (2019) 72: 759–768.
(72)       Jin-Young Min and Yong Ju Jang. Macrolide Therapy in Respiratory Viral Infections. Mediat Inflamm (2012) 1: 649570.
(73)       Schögler A, Kopf BS, Edwards MR, Johnston SL, Casaulta C, Kieninger E, Jung A, Moeller A, Geiser T, Regamey N, Alves MP.  Novel antiviral properties of azithromycin in cystic fibrosis airway epithelial cells. Eur Respir J (2015) 45: 428–439.
(74)       Menzel M, Akbarshahi H, Bjermer L, and Uller L. Azithromycin induces anti-viral effects in cultured bronchial epithelial cells from COPD patients. Sci Rep (2016) 6: 28698.
(75)       Retallack H, Di Lullo E, Arias C, Knopp KA, Laurie MT, Sandoval-Espinosa C, Leon  KR, Krencik R, Ullian EM, Spatazza J, Pollen AA, Mandel-Brehm C, Nowakowski TJ, Kriegstein AR, De Risi JL. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc Natl Acad Sci USA (2016) 113: 14408–14413.
(76)       Kanoh S and Rubin BK. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clinic Microbiol Rev (2010) 23: 590–615.
(77)       Lee N, Wong CK, Chan MCW, Yeung ESL, Tam WWS, Tsang OTY, Choi  KW, Chan  PKS, Kwok A, Lui GCY, Leung WS, Yung IMH, Wong RYK, Cheung CSK, Hui DSC. Anti-inflammatory effects of adjunctive macrolide treatment in adults hospitalized with influenza: A randomized controlled trial. Antiviral Res (2017) 144: 48–56.
(78)       Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Zh, Xiong Y, Zhao Y, Li Y, Wang X, Peng Zh. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA - J Am Med Assoc (2020) 323: 1061–1069.
(79)       Arabi YM, Deeb AM, Al-Hameed F, Mandourah Y, Almekhlafi GA, Sindi AA, Al-Omari A, Shalhoub S, Mady a, Alraddadi B, Almotairi A, Al Khatib K, Abdulmomen A, Qushmaq I, Solaiman O, Al-Aithan AM, Al-Raddadi R, Ragab A, Al Harthy A, Kharaba
A, Jose J, Dabbagh T, Fowler RA, Balkhy HH, Merson L, Hayden FG.  Macrolides in critically ill patients with Middle East Respiratory Syndrome. Int J Infect Dis (2019) 81: 184–190.
(80)       Li H, Liu DH, Chen LL, Zhao Q, Yu YZ, Ding JJ, Miao LY, Xiao YL, Cai HR, Zhang DP, Guo YB, Xie CM.  Meta-Analysis of the adverse effects of long-term azithromycin use in patients with chronic lung diseases. Antimicrob Agents Chemother (2014) 58: 511–517.
(81)       Warren TK, Jordan R, Lo MK, Ray AS, Mackman RL, Soloveva V, Siegel D, Perron M, Bannister R, Hui, HC, Larson N, Strickley R, Wells J, Stuthman KS, Van Tongeren SA, Garza NL, Donnelly G, Shurtleff AC, Retterer CJ, Gharaibeh D, Zamani R, Kenny T, Eaton BP, Grimes E, Welch LS, Gomba L, Wilhelmsen CL, Nichols DK, Nuss JE, Nagle ER,  Kugelman JR, Palacios G, Doerffler E, Neville S, Carra E, Clarke MO, Zhang L, Lew W, Ross B, Wang Q, Chun K, Wolfe L, Babusis D, Park Y, Stray KM, Trancheva I, Feng JY, Barauskas O, Xu Y, Wong P, Braun MR, Flint M, McMullan LM, Chen SS, Fearns R, Swaminathan S, Mayers DL, Spiropoulou CL, Lee WA, Nichol ST, Cihlar T, Bavari S.  Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature (2016) 531: 381–385.
(82)       Sheahan TP, Sims AC, Leist SR, Schäfer A, Won J, Brown AJ, Montgomery SA, Hogg A, Babusis D, Clarke MO, Spahn JE, Bauer L, Sellers S, Porter D, Feng JY, Cihlar T, Jordan R, Denison MR, Baric RS.  Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat  Commun (2020) 11: 1–14.
(83)       Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, Leist SR, Pyrc K, Feng JY, Trantcheva I, Bannister R, Park Y, Babusis  D, Clarke MO, MacKman, RL, Spahn JE, Palmiotti CA, Siegel D, Ray AS, Cihlar T, Jordan R, Denison MR, Baric RS.  Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med (2017) 9: 1-7.
(84)       Lo MK, Jordan R, Arvey A, Sudhamsu J, Shrivastava-Ranjan P, Hotard AL, Flint M, McMullan LK, Siegel D, Clarke MO, Mackman RL, Hui HC, Perron M, Ray AS, Cihlar T, Nichol ST, Spiropoulou CF.  GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci Rep (2017) 7: 1–7.
(85)       Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X,  Smith EC, Case JB, Feng JY, Jordan R, Ray AS, Cihlar T, Siegel D, Mackman RL, Clarke MO, Baric RS, Denison MR.  Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. MBio (2018) 9(2): 1-18.
(86)       de Wit E, Feldmann F, Cronin J, Jordan R, Okumura A, Thomas T, Scott D, Cihlar T, Feldmann H. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci USA (2020) 117: 6771–6776.
(87)       Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, SpittersCh, Ericson K, Wilkerson S, Tural A, Diaz G, Cohn A, Fox L, Patel A, Gerber SI, Kim L, Tong S, Lu X, Lindstrom S, Pallansch MA, Weldon WC, Biggs HM, Uyeki TM, PillaiSK. First Case of 2019 Novel Coronavirus in the United States. N Engl J Med (2020) 382: 929-936.
(88)       Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, Feldt T, Green G, Green ML, Lescure FX, Nicastri E, Oda R, Yo K, Quiros-Roldan E, Studemeister A, Redinski J, Ahmed S, Bernett J, Chelliah D, Chen D, Chihara Sh, Cohen SH, Cunningham J, D’Arminio Monforte, A, Ismail S, Kato H, Lapadula G, L’Her E, Maeno T, Majumder S, Massari M, Mora-Rillo M, Mutoh Y, Nguyen D, Verweij E, Zoufaly A, OsinusiAO, DeZure A, ZhaoY, Zhong L, Chokkalingam A, Elboudwarej E, Telep L, Timbs L, Henne I, Sellers S, Cao H, Tan SK, Winterbourne L, Desai P, Mera R, Gaggar A, Myers RP, Brainard DM, Childs RF, Flanigan T.  Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Engl J Med (2020): 2327-2326.
(89)       Remdesivir, tested at Stanford Medicine, authorized for emergency use against COVID-19  Stanford Medicine. (2020).
(90)       Ruan Q, Yang K, Wang W, Jiang L, and Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. J Intensive Care Med (2020) 46: 846-848..
(91)     Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. Vol. 323, JAMA - Journal of the American Medical Association. J Amer Med Assoc   (2020) 1824–1836.
(92)       Xu X, Han M, Li T, Sun W, Wang D, Fu B, Zhou Y, Zheng X, Yang Y, Li X, Zhang X, Pan A, Wei H. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci (2020): 202005615.
(93)       Dastan F, Nadji SA, Saffaei A, and Tabarsi P. Tocilizumab administration in a refractory case of COVID-19. Int J Antimicrob Agents  (2020): 106043.
(94)       Akhtar khan NA. Anakinra for severe forms of COVID-19. Lancet rheumatol (2020) 2(10):e586-587.
(95)       Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, and Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet (2020) 395:1033–1034.
(96)       Elli EM, Baratè C, Mendicino F, Palandri F, and Palumbo GA. Mechanisms Underlying the Anti-inflammatory and Immunosuppressive Activity of Ruxolitinib. Front Oncol (2020) 9: 1186.
(97)       Bekerman E, Neveu G, Shulla A, Brannan J, Pu SY, Wang S, XiaoF, Barouch-Bentov R, Bakken RR, Mateo R, Govero J, Nagamine CM, Diamond MS, De Jonghe S, Herdewijn P, Dye JM, Randall G, Einav Sh. . Anticancer kinase inhibitors impair intracellular viral trafficking and exert broad-spectrum antiviral effects. J Clin Invest (2017) 127: 1338–1352.
(98)       Incyte Announces Plans to Initiate a Phase 3 Clinical Trial of Ruxolitinib (Jakafi®) as a Treatment for Patients with COVID-19 Associated Cytokine Storm. 2020.
(99)       Russell CD, Millar JE, and Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet (2020) 395: 473–475.
(100)    Zha L, Li S, Pan L, Tefsen B, Li Y, French N, Chen L, Yang G, Villanueva EV. Corticosteroid treatment of patients with coronavirus disease 2019 (COVID19). Med J Aust (2020) 212 (9).
(101)     Jamaati H, Dastan F, Tabarsi P, Marjani M, Saffaei A, and Hashemian SM. A fourteen-day experience with coronavirus disease 2019 (COVID-19) induced acute respiratory distress syndrome (ARDS): An Iranian treatment protocol. IJPR (2020) 19: 31–36.
(102)    Jeon S, Ko M, Lee J, Choi I, Byun SY, Park S, Shum D, Kim S. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. bioRxiv  2020.03.20.999730.
(103)    Lee N, Allen Chan KC, Hui DS, Ng EKO, Wu A, Chiu RWK, WongVWS, Chan  PKS, Wong KT, Wong E, CockramCS, Tam JS, Sung JJY, LoYMD. Effects of early corticosteroid treatment on plasma SARS-associated Coronavirus RNA concentrations in adult patients. J Clin Virol (2004) 31: 304–309.
(104)     Alfaraj SH, Al-Tawfiq JA, Assiri AY, Alzahrani NA, Alanazi AA, and Memish ZA. Clinical predictors of mortality of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection: A cohort study. Travel Med Infect Dis (2019) 29: 48–50.
(105)      Matsuyama S, Kawase M, Nao N, Shirato K, Ujike M, Kamitani W, Shimojima M,
Fukushi Sh. The inhaled corticosteroid ciclesonide blocks coronavirus RNA replication by targeting viral NSP15. bioRxiv  2020.03.11.987016.
(106)     Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens, TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten Ch, Pöhlmann S.  SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell (2020) 181: 271-280.e8.
(107)     Yamamoto M, Matsuyama S, Li X, Takeda M, Kawaguchi Y, Inoue JI, MatsudaZ. Identification of nafamostat as a potent inhibitor of middle east respiratory syndrome Coronavirus s protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay. Antimicrob Agents Chemother (2016) 60: 6532–6539.
(108)     Hoffmann M, Schroeder S, Kleine-Weber H, Müller MA, Drosten C, and Pöhlmann S. Nafamostat mesylate blocks activation of SARS-CoV-2: New treatment option for COVID-19. Antimicrob Agents Chemother (2020) 64(6): e00754-20.
(109)     Kruse RL. Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China. F1000 Res, NLM (Medline) (2020) 9: 72.
(110)      Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P, Sarao R, Wada T, Leong-Poi, H, Crackower MA, Fukamizu A, Hui CC, Hein L, Uhlig S, Slutsky AS, Jiang Ch, Penninger, JM. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature (2005) 436: 112–116.
(111)     Gu H, Xie Z, Li T, Zhang S, Lai C, Zhu P,  Wang K, Han L, Duan Y, Zhao Zh, Yang X,  Xing  L, Zhang P, Wang Zh, Li R, Yu JJ, Wang X, Yang P. Angiotensin-converting enzyme 2 inhibits lung injury induced by respiratory syncytial virus. Sci. Rep. (2016) 6(1): 19840.
(112)      Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, Leopoldi A, Garreta E, Hurtado dPC, Prosper F, Romero JP, Wirnsberger G, Zhang H, Slutsky AS. Conder R, Montserrat N, Mirazimi A, Penninger JM.  Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell (2020) 181: 905-913.e7.
(113)     Jawhara S. Could intravenous immunoglobulin collected from recovered coronavirus patients protect against covid-19 and strengthen the immune system of new patients? Int J Mol Sci. MDPI AG (2020) 21 (7):2272 .
(114)     Pyrc K, Bosch BJ, Berkhout B, Jebbink MF, Dijkman R, Rottier P, Van Der Hoek L. Inhibition of human coronavirus NL63 infection at early stages of the replication cycle. Antimicrob Agents Chemother (2006) 50: 2000–2008.
(115)     Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, Wang F, Li D, Yang M, Xing L, Wei J, Xiao H, Yang Y, Qu J, Qing L, Chen L, Xu Zh, Peng L, Li Y, Zheng H, Chen F, Huang, K, Jiang Y, Liu D, Zhang Zh, Liu Y, Liu L.  Treatment of 5 Critically Ill Patients with COVID-19 with Convalescent Plasma. JAMA - J Am Med Assoc. (2020) 323: 1582–1589.
(116)     Investigational COVID-19 Convalescent Plasma Guidance for Industry. Preface Public Comment. (2020)
(117)    Xie Y, Cao S, Dong H, Li Q, Chen E, Zhang W, Yang L, Fu Sh, Wang R. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J Infection  (2020) 81 (2): 318-356.
(118)     Philippidis A. Vanquishing the Virus: 160+ COVID-19 Drug and Vaccine Candidates in Development. GEN 2020.
(119)      Bian H, Zheng Z-H, Wei D, Zhang Z, Kang W-Z, Hao C-Q, Dong K, Kang W, Xia JL, Miao JL, Xie RH, Wang B, Sun XX, Yang XM, Lin P, Geng JJ, Wang K, Cui HY, Zhang K, Chen XCh, Tang H, Du H, Yao N, Liu SS, Liu LN, Zhang Zh, Gao ZhW, Nan G, Wang QY, Lian JQ, Chen ZhN, Zhu P. Meplazumab treats COVID-19 pneumonia: an open-labelled, concurrent controlled add-on clinical trial. medRxiv 2020.03.21.20040691.
(120)    Metcalfe SM. Mesenchymal stem cells and management of COVID-19 pneumonia. Med Drug Discov (2020) 5: 100019.
(121)      Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han Q, Guangliang Sh, Fanyan M, Dongshu D, Shihua W, Jufan F, Wenjing W, Luchan D, Hongbo Sh,  Hongjun L,  Zhongjie H,  Fengchun Zh,  Jinming G,  Hongjian L, Xiaoxia L, Yangyang Zh, Kan Y,  Xijing H,  Zhengchao G,  Yibin W, Bo Y,  Ronghua J, Ilia S, Lee Wei L, Huanxing S, Alexey M,  Antonio C, Sasanka Ch, Kyung Jin M, Georgina E, Calogero C, Kunlin J, Robert Chunhua Zh. Transplantation of ACE2- Mesenchymal stem cells improves the outcome of patients with covid-19 pneumonia. Aging Dis(2020) 11: 216–228.
(122)      Loginova SIa, Borisevich SV, Maksimov VA, Bondarev VP, Kotovskaia SK, Rusinov VL, Charushin VN, Chupakhin  ON. Therapeutic efficacy of Triazavirin, a novel Russian chemotherapeutic, against influenza virus A (H5N1). Antibiot. Chemoterapy (2011) 56: 10–12.
(123)      WHO. Clinical management of COVID-19. Available from: URL: https://www.who.int/publications/i/item/clinical-management-of-covid-19