Synthesis and Bioactivity of a Cyclopolypeptide from Caribbean Marine Sponge

Document Type : Research article


1 Laboratory of Peptide Research and Development, School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago.

2 Department of Pharmaceutical Chemistry, GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India.

3 School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.

4 Department of Pharmacy, College of Medical and Health Sciences, Wollega University, Nekemte, Ethiopia.

5 Department of Chemistry, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago.

6 Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.

7 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, AIMST University, Semeling, Bedong, Kedah, Malaysia.


Synthesis of a natural proline-rich cyclopolypeptide - rolloamide A [8] was carried out by coupling of tri- and tetrapeptide units Boc-Phe-Pro-Val-OMe and Boc-Pro-Leu-Pro-Ile-OMe after proper deprotection at carboxyl and amino terminals using carbodiimide chemistry in alkaline environment followed by cyclization of linear heptapeptide segment in the presence of base. The structure of synthesized peptide was confirmed by spectral techniques including FTIR, 1H NMR, 13C NMR, MS analyses. Newly synthesized peptide was subjected to biological screening against pathogenic microbes and earthworms. Cyclopeptide 8 possessed promising activity against pathogenic fungi Candida albicans (ZOI: 24 mm, MIC: 6 μg/mL) and Gram-negative bacteria Pseudomonas aeruginosa (ZOI: 27 mm, MIC: 6 μg/mL) and Klebsiella pneumoniae (ZOI: 23 mm, MIC: 12.5 μg/mL), in comparison  to reference drugs – griseofulvin  (ZOI: 20 mm, MIC: 6 μg/mL) and ciprofloxacin  (ZOI: 25 mm, MIC: 6 μg/mL/ZOI: 20 mm, MIC: 12.5 μg/mL).  Also, newly synthesized heptacyclopeptide exhibited potent anthelmintic activity against earthworms Megascoplex konkanensis, Pontoscotex corethruses, and Eudrilus species (MPT/MDT ratio – 8.22-16.02/10.06-17.59 min), in comparison to standard drugs - mebendazole (MPT/MDT ratio – 10.52-18.02/12.57-19.49 min) and piperazine citrate (MPT/MDT ratio – 12.38-19.17/13.44-22.17 min).

Graphical Abstract

Synthesis and Bioactivity of a Cyclopolypeptide from Caribbean Marine Sponge


(1)     Dahiya R and Dahiya S. Chapter 24. Ocular Delivery of Peptides and Proteins. In: Patel JK, Sutariya V, Kanwar JR and Pathak YV. (eds.). Drug Delivery for the Retina and Posterior Segment Disease. 1st edition, Springer, Cham, Switzerland (2018) 411-37.
(2)     Vitali A. Antimicrobial peptides derived from marine sponges. J. Clin. Microbiol. Antimicrob. (2018) 1: 1006.
(3)     Fusetani N and Matsunaga S. Bioactive sponge peptides. Chem. Rev. (1993) 93: 1793-806.
(4)     Dahiya R and Pathak D. Cyclic peptides: new hope for antifungal therapy. Egypt. Pharm. J. (NRC) (2006) 5: 189-99.
(5)     Zhang X, Jacob MR, Ranga Rao R, Wang YH, Agarwal AK, Newman DJ, Khan IA, Clark AM and Li XC. Antifungal cyclic peptides from the marine sponge Microscleroderma herdmani. Res. Rep. Med. Chem. (2013) 3: 9-10.
(6)     Wakimoto T, Tan K, Tajima H and Abe I. Cytotoxic Cyclic Peptides from the Marine Sponges. In: Kim SK. (ed.) Handbook of Anticancer Drugs from Marine Origin. Springer, Cham, Switzerland (2015) 113-44.
(7)     Suarez Jimenez GM, Burgos Hernandez A and Ezquerra Brauer JM. Bioactive peptides and depsipeptides with anticancer potential: sources from marine animals. Mar. Drugs (2012) 10: 963-86.
(8)     Pathak D and Dahiya R. Cyclic peptides as novel antineoplastic agents: a review. J. Sci. Pharm. (2003) 4: 125-31.
(9)     Rashid MA, Gustafson KR, Boswell JL and Boyd MR. Haligramides A and B, two new cytotoxic hexapeptides from the marine sponge Haliclona nigra. J. Nat. Prod. (2000) 63: 956-9.
(10)   Sera Y, Adachi K, Fujii K and Shizuri Y. A new antifouling hexapeptide from a Palauan sponge, Haliclona sp. J. Nat. Prod. (2003) 66: 719-21.
(11)   Daletos G, Kalscheuer R, Koliwer Brandl H, Hartmann R, de Voogd NJ, Wray V, Lin W and Proksch P. Callyaerins from the marine sponge Callyspongia aerizusa: Cyclic peptides with antitubercular activity. J. Nat. Prod. (2015) 78: 1910-25.
(12)   Yamano Y, Arai M and Kobayashi M. Neamphamide B, new cyclic depsipeptide, as an anti-dormant mycobacterial substance from a Japanese marine sponge of Neamphius sp. Bioorg. Med. Chem. Lett. (2012) 22: 4877-81.
(13)   Plaza A, Bifulco G, Keffer JL, Lloyd JR, Baker HL and Bewley CA. Celebesides A-C and theopapuamides B-D, depsipeptides from an Indonesian sponge that inhibit HIV-1 entry. J. Org. Chem. (2009) 74: 504-12.
(14)   Tiwari J, Gupta G, Dahiya R, Pabreja K, Kumar Sharma R, Mishra A and Dua K. Recent update on biological activities and pharmacological actions of liraglutide. Excli J. (2017) 16: 742-7.
(15)   Singh Y, Gupta G, Shrivastava B, Dahiya R, Tiwari J, Ashwathanarayana M, Sharma RK, Agrawal M, Mishra A and Dua K. Calcitonin gene-related peptide (CGRP): A novel target for Alzheimer’s disease. CNS Neurosci. Ther. (2017) 23: 457-61.
(16)   Gupta G, Tiwari J, Dahiya R, Kumar Sharma R, Mishra A and Dua K. Recent updates on neuropharmacological effects of luteolin. Excli J. (2018) 17: 211-4.
(17)   Dahiya S and Dahiya R. Chapter 11. Recent Nanotechnological Advancements in Delivery of Peptide and Protein Macromolecules. In: Rauta PR, Mohanta YK, Nayak D. (eds.) Nanotechnology in Biology and Medicine: Research Advancements and Future Perspectives. 1st edition, CRC Press, Taylor and Francis Group, Boca Raton, FL, USA (2019) 143-157.
(18)   Gang D, Kim DW and Park HS. Cyclic peptides: promising scaffolds for biopharmaceuticals. Genes (Basel) (2018) 9: 557.
(19)   Dahiya R, Dahiya S, Fuloria NK, Kumar S, Mourya R, Chennupati SV, Jankie S, Gautam H, Singh S, Karan SK, Maharaj S, Fuloria S, Shrivastava J, Agarwal A, Singh S, Kishor A, Jadon G and Sharma A. Natural bioactive thiazole-based peptides from marine resources: structural and pharmacological aspects. Mar. Drugs (2020) 18: 329.
(20)   Qian Z, Rhodes CA, McCroskey LC, Wen J, Appiah-Kubi G, Wang DJ, Guttridge DC and Pei D. Enhancing the cell permeability and metabolic stability of peptidyl drugs by reversible bicyclization. Angew. Chem. Int. Ed. (2017) 56: 1525-9. 
(21)   Joo SH. Cyclic peptides as therapeutic agents and biochemical tools. Biomol. Ther. (Seoul) (2012) 20: 19-26.
(22)   Dahiya R. Cyclopolypeptides with antifungal interest. Coll. Pharm. Commun. (2013) 1: 1-15.
(23)   Vitali A. Proline-rich peptides: multifunctional bioactive molecules as new potential therapeutic drugs. Curr. Protein Pept. Sci. (2015) 16: 147-162.
(24)   Sadler K, Eom KD, Yang JL, Dimitrova Y and Tam JP. Translocating proline-rich peptides from the antimicrobial peptide bactenecin 7. Biochemistry (2002) 41: 14150-7.
(25)   Fang WY, Dahiya R, Qin HL, Mourya R and Maharaj S. Natural proline-rich cyclopolypeptides from marine organisms: Chemistry, synthetic methodologies and biological status. Mar. Drugs (2016) 14: 194.
(26)   Dahiya R, Kumar S, Khokra SL, Gupta SV, Sutariya VB, Bhatia D, Sharma A, Singh S and Maharaj S. Toward the synthesis and improved biopotential of an N-methylated analog of a proline-rich cyclic tetrapeptide from marine bacteria. Mar. Drugs (2018) 16: 305.
(27)   Dahiya R, Singh S, Sharma A, Chennupati SV and Maharaj S. First total synthesis and biological screening of a proline-rich cyclopeptide from a Caribbean marine sponge. Mar. Drugs (2016) 14: 228.
(28)   Dahiya R, Singh S, Varghese Gupta S, Sutariya VB, Bhatia D, Mourya R, Chennupati SV and Sharma A. First total synthesis and pharmacological potential of a plant based hexacyclopeptide. Iran. J. Pharm. Res. (2019) 18: 938-47.
(29)   Dahiya R and Singh S. Synthesis, characterization and biological screening of diandrine A. Acta Pol. Pharm. (2017) 74: 873-80.
(30)   Dahiya R and Singh S. Synthesis, characterization, and biological activity studies on fanlizhicyclopeptide A. Iran. J. Pharm. Res. (2017) 16: 1176-84.
(31)   Dahiya R and Singh S. Toward the synthesis and pharmacological screening of a natural cycloheptapeptide of plant origin. Nat. Prod. Commun. (2017) 12: 379-83.
(32)   Dahiya R, Pathak D, Himaja M and Bhatt S. First total synthesis and biological screening of hymenamide E. Acta Pharm. (2006) 56: 399-415.
(33)   Dahiya R and Gautam H. Total synthesis and antimicrobial activity of a natural cycloheptapeptide of marine origin. Mar. Drugs (2010) 8: 2384-94.
(34)   Dahiya R, Kumar A and Gupta R. Synthesis, cytotoxic and antimicrobial screening of a proline-rich cyclopolypeptide. Chem. Pharm. Bull. (Tokyo) (2009) 57: 214-7.
(35)   Dahiya R. Total synthesis and biological potential of psammosilenin A. Arch. Pharm. (Weinheim) (2008) 341: 502-9.
(36)   Dahiya R and Kaur K. Synthetic and biological studies on natural cyclic heptapeptide: segetalin E. Arch. Pharm. Res. (2007) 30: 1380-6.
(37)   Dahiya R and Gautam H. Synthesis, characterization and biological evaluation of     cyclomontanin D. Afr. J. Pharm. Pharmacol. (2011) 5: 447-53.
(38)   Khatib ME, Elagawany M, Çalışkan E, Davis EF, Faidallah HM, El feky SA and Katritzky AR. Total synthesis of cyclic heptapeptide rolloamide B.
Chem. Commun. (2013) 49: 2631-3.
(39)   Elagawany M and Ibrahim MA. An improved route for the synthesis of rolloamide B. Tetrahedron Lett. (2016) 57: 3837-40.
(40)   Williams DE, Yu K, Behrisch HW, Soest RV and Andersen RJ. Rolloamides A and B, cytotoxic cyclic heptapeptides isolated from the Caribbean marine sponge Eurypon laughlini. J. Nat. Prod. (2009) 72: 1253-7.
(41)   Dahiya R and Gautam H. Synthesis and pharmacological studies on a cyclooligopeptide from marine bacteria. Chin. J. Chem. (2011) 29: 1911-6.
(42)   Dahiya R and Gautam H. Solution phase synthesis and bioevaluation of cordyheptapeptide B. Bull. Pharm. Res. (2011) 1: 1-10.
(43)   Dahiya R and Singh S. First total synthesis and biological potential of a heptacyclopeptide of plant origin. Chin. J. Chem. (2016) 34: 1158-64.
(44)   Dahiya R, Singh S, Kaur K and Kaur R. Total synthesis of a natural cyclooligopeptide from fruits of sugar-apples. Bull. Pharm. Res. (2017) 7: 151.
(45)   Dahiya R. Synthesis and biological activity of a cyclic hexapeptide from Dianthus superbus. Chem. Pap. (2008) 62: 527-35.
(46)   Dahiya R. Synthesis and in vitro cytotoxic activity of a natural peptide of plant origin. J. Iranian Chem. Soc. (2008) 5: 445-52.
(47)   Dahiya R, Maheshwari M and Kumar A. Toward the synthesis and biological evaluation of hirsutide. Monatsh. Chem. (2009) 140: 121-7.
(48)   Bauer AW, Kirby WM, Sherris JC and Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Path. (1966) 45: 493-96.
(49)   Garg LC and Atal CK. Anthelmintic activity of Myrsine africana. Indian J. Pharm. Sci. (1963) 59: 240-45.
(50)   Dahiya R and Pathak D. Synthetic studies on novel benzimidazolopeptides with   antimicrobial, cytotoxic and anthelmintic potential. Eur. J. Med. Chem. (2007) 42: 772-98.
(51)   Dahiya R, Kumar A and Yadav R. Synthesis and biological activity of peptide derivatives of iodoquinazolinones/nitroimidazoles. Molecules (2008) 13: 958-76.
(52)   Dahiya R and Kaur K. Synthesis and pharmacological investigation of segetalin C as a novel antifungal and cytotoxic agent. Arzneimittelforschung (2008) 58: 29-34.
(53)   Dahiya R. Synthesis of 4-(2-methyl-1H-5-imidazolyl) benzoyl amino acids and peptides as possible anthelmintic agents. Ethiop. Pharm. J. (2008) 26: 17-26.
(54)   Dahiya R and Gautam H. Toward the synthesis and biological screening of a cyclotetrapeptide from marine bacteria. Mar. Drugs (2011) 9: 71-81.
(55)   Dahiya R and Kumar A. Synthetic and biological studies on a cyclopolypeptide of plant origin. J. Zhejiang Univ. Sci. B (2008) 9: 391-400.
(56)   Bodanzsky M and Bodanzsky A. The Practice of Peptide Synthesis. Springer-Verlag, New York (1984) 78-143.