( 1) Belardinelli R, Solenghi M, Volpe L and Purcaro A. Trimetazidine improves endothelial dysfunction in chronic heart failure: an antioxidant effect. Eur. Heart. J. (2007) 28: 1102-8.
(2) Lau DC, Dhillon B, Yan H, Szmitko PE and Verma S. Adipokines: molecular links between obesity and atheroslcerosis. Am. J. Physiol. Heart. Circ. Physiol. (2005) 288: 2031-41.
(4) Salmanoglu DS, Gurpinar T, Vural K, Ekerbicer N, Dariverenli E and Var A. Melatonin and L-carnitin improves endothelial disfunction and oxidative stress in Type 2 diabetic rats. Redox. Biol. (2016) 8:199-204.
(5) Wang Y, Meng X and Yan H. Niaspan inhibits diabetic retinopathyinduced vascular inflammation by downregulating the tumor necrosis factoralpha pathway. Mol. Med. Rep. (2017) 15: 1263-71.
(6)
Joussen AM,
Poulaki V,
Le ML,
Koizumi K,
Esser C,
Janicki H,
Schraermeyer U,
Kociok N,
Fauser S,
Kirchhof B,
Kern TS and
Adamis AP. A central role for inflammation in the pathogenesis of diabetic retinopathy.
FASEB. J. (2004) 18: 1450-2.
(7) Friedman RC, Farh KK, Burge CB and Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome. Res. (2009) 19: 92-105.
(8) Ha M and Kim VN. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell. Biol. (2014) 15: 509-24.
(10) Shantikumar S, Caporali A and Emanueli C. Role of microRNAs in diabetes and its cardiovascular complications. Cardiovasc. Res. (2012) 93: 583-93.
(11) Xiang Y. miR-24 in diabetes. Oncotarget. (2015) 6: 16816-7.
(12)
Zampetaki A,
Kiechl S,
Drozdov I,
Willeit P,
Mayr U,
Prokopi M,
Mayr A,
Weger S,
Oberhollenzer F,
Bonora E,
Shah A,
Willeit J and
Mayr M. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes.
Circ. Res. (2010) 107: 810-7.
(14)
Fiedler J,
Jazbutyte V,
Kirchmaier BC,
Gupta SK,
Lorenzen J,
Hartmann D,
Galuppo P,
Kneitz S,
Pena JT,
Sohn-Lee C,
Loyer X,
Soutschek J,
Brand T,
Tuschl T,
Heineke J,
Martin U,
Schulte-Merker S,
Ertl G,
Engelhardt S,
Bauersachs J and
Thum T. MicroRNA-24 regulates vascularity after myocardial infarction.
Circulation (2011) 124: 720-30.
(16) Szwed H, Hradec J and Preda I. Anti-ischaemic efficacy and tolerability of trimetazidine administered to patients with angina pectoris: results of three studies. Coron. Artery. Dis. (2001) 12 : 25-8.
(17) Kantor PF, Lucien A, Kozak R and Lopaschuk GD. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ. Res. (2000) 86: 580-8.
(18) Onay-Besikci A, Guner S, Arioglu E, Ozakca I, Ozcelikay AT and Altan VM. The effects of chronic trimetazidine treatment on mechanical function and fatty acid oxidation in diabetic rat hearts. Can. J. Physiol. Pharmacol. (2007) 85: 527-35.
(20) Brenner C and Moulin M. Physiological roles of the permeability transition pore. Circ. Res. (2012) 111: 1237-47.
(21) Marchi S, Patergnani S and Pinton P. The endoplasmic reticulum-mitochondria connection: one touch, multiple functions. Biochimica. Et. Biophysica. acta. (2014) 1837: 461-9.
(22)
Patergnani S,
Suski JM,
Agnoletto C,
Bononi A,
Bonora M,
De Marchi E,
Giorgi C,
Marchi S,
Missiroli S,
Poletti F,
Rimessi A,
Duszynski J,
Wieckowski MR and
Pinton P. Calcium signaling around Mitochondria Associated Membranes (MAMs).
Cell. Commun. Signal. (2011) 9: 19.
(24) Xiang YL, He L, Xiao J, Xia S, Deng SB, Xiu Y and She Q. Effect of trimetazidine treatment on the transient outward potassium current of the left ventricular myocytes of rats with streptozotocin-induced type 1 diabetes mellitus. Braz. J. Med. Biol. Res. (2012) 45: 205-11.
(26) Huang X, Gao Y, Qin J and Lu S. The role of miR-34a in the hepatoprotective effect of hydrogen sulfide on ischemia/reperfusion injury in young and old rats. PloS One (2014) 9: 113305.
(27) Salvoza NC, Klinzing DC, Gopez-Cervantes J and Baclig MO. Association of Circulating Serum miR-34a and miR-122 with Dyslipidemia among Patients with Non-Alcoholic Fatty Liver Disease. PloS. One (2016) 11: 0153497.
(28) Bertrand L, Horman S, Beauloye C and Vanoverschelde JL. Insulin signalling in the heart. Cardiovasc. Res. (2008) 79: 238–48.
(29) Osorio-Fuentealba C, Contreras-Ferrat AE, Altamirano F, Espinosa A, Li Q, Niu W, Lavandero S, Klip A and Jaimovich E. Electrical stimuli release ATP to increase GLUT4 translocation and glucose uptake via PI3Kgamma-Akt-AS160 in skeletal muscle cells. Diabetes (2013) 62: 1519–26.
(30) Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes. Dev. (2011) 25: 1895–908.
(31) Lee L, Horowitz J and Frenneaux M. Metabolic manipulation in ischaemic heart disease, a novel approach to treatment. Eur. Heart. J. (2004) 25: 634-41.
(32) Stanley WC and Marzilli M. Metabolic therapy in the treatment of ischaemic heart disease: the pharmacology of trimetazidine. Fundam. Clin. Pharmacol. (2003) 17: 133-45.
(33) Fasola TR, Ukwenya B, Oyagbemi AA, Omobowale TO and Ajibade TO. Antidiabetic and antioxidant effects of Croton lobatus L. in alloxan-induced diabetic rats. J. Intercult. Ethnopharmacol. (2016) 5: 364-71.
(34) Hopkins PN. Molecular biology of atherosclerosis. Physiol. Rev. (2013) 93: 1317-542.
(35) Forbes JM and Cooper ME. Mechanisms of diabetic complications. Physiol. Rev. (2013) 93: 137-88.
(36) Tenenbaum A, Klempfner R and Fisman EZ. Hypertriglyceridemia: a too long unfairly neglected major cardiovascular risk factor. Cardiovasc. Diabetol. (2014) 13: 159.
(37) Galkina E and Ley K. Immune and inflammatory mechanisms of atherosclerosis . Annu. Rev. Immunol. (2009) 27: 165-97.
(38) Ruiz-Meana M. Trimetazidine, oxidative stress, and cell injury during myocardial reperfusion. Revista. Espanola. De. cardiologia. (2005) 58: 895-7.
(40) Goljanek-Whysall K, Iwanejko LA, Vasilaki A, Pekovic-Vaughan V and McDonagh B. Ageing in relation to skeletal muscle dysfunction: redox homoeostasis to regulation of gene expression. Mamm. Genome. (2016) 27: 341-57.
(41) Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD,
Ivey KN,
Bruneau BG,
Stainier DY and
Srivastava D. miR-126 regulates angiogenic signaling and vascular integrity.
Dev. Cell (2008) 15: 272-84.
(42) Tao H, Wang MM, Zhang M, Zhang SP, Wang CH, Yuan WJ,
Sun T,
He LJ and
Hu QK. MiR-126 Suppresses the Glucose-Stimulated Proliferation via IRS-2 in INS-1 beta Cells.
PLoS. One (2016)11: 0149954.
(43) Li Y, Zhou Q, Pei C, Liu B, Li M, Fang L,
Sun Y,
Li Y and
Meng S. Hyperglycemia and Advanced Glycation End Products Regulate miR-126 Expression in Endothelial Progenitor Cells.
J. Vasc. Res. (2016) 53: 94-104.
(44) Tang ST, Wang F, Shao M, Wang Y and Zhu HQ. MicroRNA-126 suppresses inflammation in endothelial cells under hyperglycemic condition by targeting HMGB1. Vascul. Pharmacol. (2017) 88: 48-55.
(46) Jansen F, Yang XY, Nickenig G and Werner N. Endothelial Microparticle-mediated Transfer of MicroRNA-126 Promotes Vascular Endothelial Cell Repair Via SPRED1 and is Abrogated in Glucose-damaged Endothelial Microparticles. Circulation (2013) 128.pages
(47) Badavi M, Abedi HA, Dianat M and Sarkaki A. Exercise Training and Grape Seed Extract Co-administration Improve Endothelial Dysfunction of Mesenteric Vascular Bed in STZ-induced Diabetic Rats. Int. J. Pharmacol. (2011) 7: 813-20.
(49) Belardinelli R. Ischemic heart disease and left ventricular dysfunction: the role of trimetazidine. Ital. Heart. J. (2004) 5 : 23S-8S.
(50) Yang J, Fan Z, Yang J, Ding J, Yang C and Chen L. MicroRNA-24 Attenuates Neointimal Hyperplasia in the Diabetic Rat Carotid Artery Injury Model by Inhibiting Wnt4 Signaling Pathway. Int. J. Mol. Sci. (2016) 17.