Green Nanotechnology-based Gold Nanomaterials for Hepatic Cancer Therapeutics: A Systematic Review

Document Type : Review Paper


1 Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

2 Department of Chemical Engineering, Northeastern University, Boston, MA 02115 USA.

3 Shahid Beheshti University of Medical Sciences, Tehran, Iran.

4 Golestan University of Medical Sciences, Food and Drug Administration, Gorgan, Iran.

5 School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

6 Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University, Tehran, Iran of Medical Sciences.

7 Student Research Committee, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.

8 Department of Medical Microbiology and Immunology, Institute of Biomedical Sciences, College of Health Sciences, Mekelle University, 1871 Mekelle, Ethiopia.


The objective of the current study was to systematically review the in-vitro anticancer activity of green synthesized gold nanoparticles (AuNPs) against hepatic cancer cells. The articles were identified through electronic databases, including PubMed, Scopus, Embase, Web of Science, Science Direct, ProQuest, and Cochrane. In total, 20 articles were found eligible to enter into our systematic review. Our findings showed that 65% of the articles used herbal extracts for the synthesis of AuNPs. Significantly, almost all of the articles stated the biofabrication of AuNPs below 100 nm in diameter. Impressively, most of the studies showed significant anticancer activity against HepG2 cells. Molecular studies stated the induction of apoptosis through the AuNPs-treated cells. We provided valuable information about the molecular mechanisms of AuNPs-induced cytotoxicity against HepG2 cells as well as their biocompatibility. The studies represented that AuNPs can be effective as anticancer drug nanocarrier for drug delivery systems. In addition, AuNP surface functionalization provides an opportunity to design multifunctional nanoparticles by conjugating them to diagnostic and/or therapeutic agents for theranostic purposes. Overall, our findings depicted considerable biogenic AuNPs-induced cytotoxicity, however, future studies should assess the anticancer activity of biogenic AuNPs through in-vivo studies, which was missing from such studies.

Graphical Abstract

Green Nanotechnology-based Gold Nanomaterials for Hepatic Cancer Therapeutics: A Systematic Review


(1) Ogunwobi OO, Harricharran T, Huaman J, GaluzaA, Odumuwagun O, Tan Y, Ma GX and NguyenMT. Mechanisms of hepatocellular carcinomaprogression. World J. Gastroenterol. (2019) 25:2279-93.
(2) Villanueva A. Hepatocellular Carcinoma. N. Engl. J.Med. (2019) 380: 1450-62.
(3) Tunissiolli NM, Castanhole-Nunes MMU, BiselliChicote PM, Pavarino ÉC, da Silva RF, da SilvaRdCMA and Goloni-Bertollo EM. Hepatocellularcarcinoma: a comprehensive review of biomarkers,clinical aspects, and therapy. Asian Pac. J. CancerPrev. (2017) 18: 863-72.
(4) Siegel RL, Miller KD and Jemal A. Cancer statistics,2019. CA Cancer J. Clin. (2019) 69: 7-34.
(5) Marengo A, Rosso C, and Bugianesi E. Liver cancer:connections with obesity, fatty liver and cirrhosis.Annu. Rev. Med. (2016) 67: 103-17.
(6) Yang JD, Hainaut P, Gores GJ, Amadou A, PlymothA and Roberts LR. A global view of hepatocellularcarcinoma: trends, risk, prevention and management.Nat. Rev. Gastroenterol. Hepatol. (2019) 16: 589-604.
(7) Daher S, Massarwa M, Benson AA and KhouryT. Current and future treatment of hepatocellularcarcinoma: an updated comprehensive review. J.Clin. Transl. Hepatol. (2018) 6: 69-78.
(8) Pugazhendhi A, Edison TNJI, Karuppusamy I andKathirvel B. Inorganic nanoparticles: a potentialcancer therapy for human welfare. Int. J. Pharm.(2018) 539: 104-11.
(9) Baig B, Halim SA, Farrukh A, Greish Y and Amin A.Current status of nanomaterial-based treatment forhepatocellular carcinoma. Biomed. Pharmacother.(2019) 116: 108852.
(10) Barabadi H. Nanobiotechnology: a promising scopeof gold biotechnology. Cell. Mol. Biol. (2017) 63:3-4.
(11) Wei L, Lu J, Xu H, Patel A, Chen ZS and ChenG. Silver nanoparticles: synthesis, properties, andtherapeutic applications. Drug Discovery Today.(2015) 20: 595-601.
(12) Kelly KL, Coronado E, Zhao LL and Schatz GC.The optical properties of metal nanoparticles: theinfluence of size, shape, and dielectric environment.J. Phys. Chem. B. (2003) 107: 668–77.14Barabadi H et al. / IJPR (2020), 19 (3): 3-17
(13) Medina-Cruz D, Mostafavi E, Vernet-Crua A,Cheng J, Shah V, Cholula-Diaz JL, Guisbiers G,Tao J, García-Martín JM and Webster TJ. Greennanotechnology-based drug delivery systemsforosteogenic disorders. Expert Opin. Drug Deliv.(2020) 17: 1-16.
(14) Yadi M, Mostafavi E, Saleh B, Davaran S, AliyevaI, Khalilov R, Nikzamir M, Nikzamir N, AkbarzadehA and Panahi Y. Current developments in greesynthesis of metallic nanoparticles usingplantextracts: a review. Artif. Cells Nanomed. Biotechnol.(2018) 46: S336-S43.
(15) Kalantari K, Mostafavi E, Afifi AM, Izadiyan Z,Jahangirian H, Rafiee-Moghaddam R and WebsterTJ. Wound dressings functionalized with silvernanoparticles: promises and pitfalls. Nanoscale(2020) 12: 2268-91.
(16) Salari S, Esmaeilzadeh Bahabadi S, SamzadehKermani A and Yousefzaei F. In-vitro evaluationof antioxidant and antibacterial potential of greensynthesized silver nanoparticles usingProsopisfarcta fruit extract. Iran. J. Pharm. Res. (2019) 18:430-45.
(17) Karimi N, Chardoli A and Fattahi A. Biosynthesis,characterization, antimicrobial and cytotoxic effectsof silver nanoparticles using Nigella arvensis seedextract. Iran. J. Pharm. Res. (2017) 16: 1167-75.
(18) Abbas Q, Saleem M, Phull AR, Rafiq M, HassanM, Lee KH and Seo SY. Green synthesis of silvernanoparticles using Bidens frondosa extract and theirtyrosinase activity. Iran. J. Pharm. Res. (2017) 16:760-7.
(19) Or Rashid MM, Islam MS, Haque MA, RahmanMA, Hossain MT and Hamid MA. Antibacterialactivity of polyaniline coated silver nanoparticlessynthesized from Piper betle leaves extract. Iran. J.Pharm. Res. (2016) 15: 591-7.
(20) Rezvani Amin Z, Khashyarmanesh Z, Fazly BazzazBS and Sabeti Noghabi Z. Does biosynthetic silvernanoparticles are more stable with lower toxicitythan their synthetic counterparts? Iran. J. Pharm.Res. (2019) 18: 210-21.
(21) Terra ALM, Kosinski RdC, Moreira JB, CostaJAV and Morais MGd. Microalgae biosynthesis ofsilver nanoparticles for application in the control ofagricultural pathogens. J. Environ. Sci. Health B.(2019) 54: 709-16.
(22) Gonzalez-Ballesteros N, Rodriguez-Arguelles MC,Prado-Lopez S, Lastra M, Grimaldi M, CavazzaA, Nasi L, Salviati G and Bigi F. Macroalgae tonanoparticles: Study of Ulva lactuca L. role inbiosynthesis of gold and silver nanoparticles and of their cytotoxicity on colon cancer cell lines. Mater.Sci. Eng. C Mater. Biol. Appl. (2019) 97: 498-509.
(23) Thakkar KN, Mhatre SS and Parikh RY. Biologicalsynthesis of metallic nanoparticles. Nanomedicine(2010) 6: 257-62.
(24) Ahn EY, Hwang SJ, Choi MJ, Cho S, Lee HJand Park Y. Upcycling of jellyfish (Nemopilemanomurai) sea wastes as highly valuable reducingagents for green synthesis of gold nanoparticles andtheir antitumor and anti-inflammatory activity. Artif.Cells Nanomed. Biotechnol. (2018) 46: 1127-36.
(25) Chellapandian C, Ramkumar B, Puja P,Shanmuganathan R, Pugazhendhi A and Kumar P.Gold nanoparticles using red seaweed Gracilariaverrucosa: Green synthesis, characterization andbiocompatibility studies. Process Biochem. (2019)80: 58-63.
(26) Murphin Kumar PS, MubarakAli D, Saratale RG,Saratale GD, Pugazhendhi A, Gopalakrishnan Kand Thajuddin N. Synthesis of nano-cuboidal goldparticles for effective antimicrobial property againstclinical human pathogens. Microb. Pathog. (2017)113: 68-73.
(27) Suganthy N, Sri Ramkumar V, Pugazhendhi A,Benelli G and Archunan G. Biogenic synthesis of goldnanoparticles from Terminalia arjuna bark extract:assessment of safety aspects and neuroprotectivepotential via antioxidant, anticholinesterase, andantiamyloidogenic effects. Environ. Sci. Pollut. Res.
(2018) 25: 10418-33.
(28) Das RK, Pachapur VL, Lonappan L, Naghdi M,Pulicharla R, Maiti S, Cledon M, Dalila LMA, SarmaSJ and Brar SK. Biological synthesis of metallicnanoparticles: plants, animals and microbial aspects.Nanotechnol. Environ. Eng. (2017) 2: 18.
(29) Elahi N, Kamali M and Baghersad MH. Recentbiomedical applications of gold nanoparticles: areview. Talanta (2018) 184: 537-56.
(30) Jeong HH, Choi E, Ellis E and Lee TC. Recentadvances in gold nanoparticles for biomedical
applications: from hybrid structures to multifunctionality. J. Mater. Chem. B. (2019) 7: 3480-96.
(31) Kong FY, Zhang JW, Li RF, Wang ZX, Wang WJand Wang W. Unique roles of gold nanoparticles indrug delivery, targeting and imaging applications.Molecules (2017) 22: 1445.
(32) Amani H, Mostafavi E, Alebouyeh MR, ArzaghiH, Akbarzadeh A, Pazoki-Toroudi H and WebsterTJ. Would colloidal gold nanocarriers present aneffective diagnosis or treatment for ischemic stroke?Int. J. Nanomed. (2019) 14: 8013-31.
(33) Barabadi H, Vahidi H, Damavandi Kamali K,Rashedi M, Hosseini O and Saravanan M. Emergingtheranostic gold nanomaterials to combat colorectalcancer: a systematic review. J. Clust. Sci. (2020) 31:651–8. 15
(34) Barabadi H, Vahidi H, Damavandi Kamali K,Hosseini O, Mahjoub MA, Rashedi M, JazayeriShoushtari F and Saravanan M. Emerging theranosticgold nanomaterials to combat lung cancer: asystematic review. J. Clust. Sci. (2020) 31: 323–30.
(35) Kalpana D, Srikanth K, Tirupathi Pichiah PB, ChaYS and Lee YS. Synthesis, characterization and invitro cytotoxicity of gold nanoparticles using culturalfiltrate of low shear modeled microgravity andnormal gravity cultured K. pneumoniae. Macromol.Res. (2014) 22: 487-93.
(36) Shanmugasundaram T, Radhakrishnan M,Gopikrishnan V, Kadirvelu K and BalagurunathanR. Biocompatible silver, gold and silver/gold alloynanoparticles for enhanced cancer therapy: invitro and in-vivo perspectives. Nanoscale (2017) 9:16773-90.
(37) Moher D, Liberati A, Tetzlaff J and Altman DG.Preferred reporting items for systematic reviews andmeta-analyses: the PRISMA statement. PLoS Med.(2009) 6: e1000097.
(38) Majumdar M, Biswas SC, Choudhury R, UpadhyayP, Adhikary A, Roy DN and Misra TK. Synthesisof gold nanoparticles using Citrus macropterafruit extract: anti-biofilm and anticancer activity.ChemistrySelect (2019) 4: 5714-23.
(39) Li L, Zhang W, Desikan Seshadri VD and Cao G.Synthesis and characterization of gold nanoparticlesfrom Marsdenia tenacissima and its anticanceractivity of liver cancer HepG2 cells.Artif. CellsNanomed. Biotechnol. (2019) 47: 3029-36.
(40) Lee YJ, Ahn EY and Park Y. Shape-dependentcytotoxicity and cellular uptake of gold nanoparticlessynthesized using green tea extract. Nanoscale Res.Lett. (2019) 14: 1-14
(41) Ghramh HA, Khan KA and Ibrahim EH. Biologicalactivities of Euphorbia peplus leaves ethanolicextract and the extract fabricated gold nanoparticles(AuNPs). Molecules (2019) 24: 1431.
(42) Boomi P, Ganesan RM, Poorani G, GurumalleshPrabu H, Ravikumar S and Jeyakanthan J. Biologicalsynergy of greener gold nanoparticles by usingColeus aromaticus leaf extract. Mater.Sci. Eng. C(2019) 99: 202-10.
(43) Ovais M, Khalil AT, Raza A, Islam NU, AyazM, Saravanan M, Ali M, Ahmad I, Shahid Mand Shinwari ZK. Multifunctional theranosticapplications of biocompatible green-synthesizedcolloidal nanoparticles. Appl. Microbiol. Biotechnol.(2018) 102: 4393-408.
(44) Khandanlou R, Murthy V, Saranath D andDamani H. Synthesis and characterization of goldconjugated Backhousia citriodora nanoparticles andtheir anticancer activity against MCF-7 breast andHepG2 liver cancer cell lines. J. Mater. Sci. (2018)53: 3106-18.
(45) Ismail EH, Saqer AMA, Assirey E, Naqvi A andOkasha RM. Successful Green Synthesis of GoldNanoparticles using a Corchorus olitorius extractand their antiproliferative effect in cancer cells. Int.J. Mol. Sci. (2018) 19: 2612.
(46) Dhayalan M, Denison MIJ, Ayyar M, Gandhi NN,Krishnan K and Abdulhadi B. Biogenic synthesis,characterization of gold and silver nanoparticlesfrom Coleus forskohlii and their clinical importance.J. Photochem. Photobiol. B (2018) 183: 251-7.
(47) Borah D, Hazarika M, Tailor P, Silva AR, ChetiaB, Singaravelu G and Das P. Starch-templatedbio-synthesis of gold nanoflowers for in-vitroantimicrobial and anticancer activities. Appl. Nanosci. (2018) 8: 241-53.
(48) Muthukumar T, Sudhakumari, Sambandam B,Aravinthan A, Sastry TP and Kim JH. Greensynthesis of gold nanoparticles and their enhancedsynergistic antitumor activity using HepG2 andMCF7 cells and its antibacterial effects. ProcessBiochem. (2016) 51: 384-91.
(49) Balashanmugam P, Durai P, Balakumaran MDand Kalaichelvan PT. Phytosynthesized goldnanoparticles from C. roxburghii DC. leaf and theirtoxic effects on normal and cancer cell lines. J.Photochem. Photobiol. B (2016) 165: 163-73.
(50) Ashokkumar T, Prabhu D, Geetha R, GovindarajuK, Manikandan R, Arulvasu C and Singaravelu G.Apoptosis in liver cancer (HepG2) cells induced byfunctionalized gold nanoparticles. Colloids Surf. B(2014) 123: 549-56.
(51) Rajeshkumar S, Kumar SV, Malarkodi C, Vanaja M,Paulkumar K and Annadurai G. Optimized synthesisof gold nanoparticles using green chemical processand its in-vitro anticanceractivity against HepG2and A549 cell lines. Mech. Mater. Sci. Eng. J. (2017)2017: 1-7.
(52) Ajdari Z, Rahman H, Shameli K, Abdullah R, AbdGhani M, Yeap S, Abbasiliasi S, Ajdari D and AriffA. Novel gold nanoparticles reduced by Sargassumglaucescens: preparation, characterization andanticancer activity. Molecules (2016) 21: 123.
(53) Singh M, Saurav K, Majouga A, Kumari M,Kumar M, Manikandan S and Kumaraguru AK.The cytotoxicity and cellular stress by temperaturefabricated polyshaped gold nanoparticles usingmarine macroalgae, Padina gymnospora. Biotechnol.Appl. Biochem. (2015) 62: 424-32.
(54) El Domany EB, Essam TM, Ahmed AE and FarghaliAA. Biosynthesis physico-chemical optimizationof gold nanoparticles as anti-cancer and synergeticantimicrobial activity using Pleurotus ostreatus16Barabadi H et al. / IJPR (2020), 19 (3): 3-17fungus. J. Appl. Pharm. Sci. (2018) 8: 119-28.
(55) Ji Y, Cao Y and Song Y. Green synthesis of goldnanoparticles using a Cordyceps militaris extractand their antiproliferative effect in liver cancer cells(HepG2). Artif. Cells Nanomed. Biotechnol. (2019)47: 2737-45.
(56) Ovais M, Raza A, Naz S, Islam NU, Khalil AT,Ali S, Khan MA and Shinwari ZK. Current stateand prospects of the phytosynthesized colloidalgold nanoparticles and their applications in cancertheranostics. Appl. Microbiol. Biotechnol. (2017)101: 3551-65.
(57) Mostafavi E, Soltantabar P, and Webster TJ,Nanotechnology and picotechnology: A new arenafor translational medicine. In: Yang L, Bhaduri SBand Webster TJ (eds.) Biomaterials in TranslationalMedicine. 1st ed. Elsevier, Netherland (2019) 191-212.
(58) Ovais M, Khalil AT, Raza A, Khan MA, AhmadI, Islam NU, Saravanan M, Ubaid MF, Ali M andShinwari ZK. Green synthesis of silver nanoparticlesvia plant extracts: beginning a new era in cancertheranostics. Nanomedicine (2016) 11: 3157-77.
(59) Lázár I and Szabó HJ. Prevention of the aggregationof nanoparticles during the synthesis of nanogoldcontaining silica aerogels. Gels. (2018) 4: 55.
(60) Hotze EM, Phenrat T and Lowry GV. Nanoparticleaggregation: challenges to understanding transportand reactivity in the environment. J. Environ. Qual.(2010) 39: 1909-24.
(61) Newton JE, Preece JA and Pollet BG. Controlof nanoparticle aggregation in PEMFCs usingsurfactants. Int. J. Low-Carbon Technol. (2011) 7:38-43.
(62) Ajitha B, Kumar Reddy YA, Reddy PS, Jeon HJand Ahn CW. Role of capping agents in controllingsilver nanoparticles size, antibacterial activity andpotential application as opticalhydrogen peroxidesensor. RSC Adv. (2016) 6: 36171-9.
(63) Fadli AL, Hanifah A, Fitriani A, Rakhmawati A,and Dwandaru WSB. Application of silver-chitosannanoparticles as a prevention and eradication ofnosocomial infections due to Staphylococcus aureussp. AIP Conference Proceedings 2014. (2018)020017.
(64) Dzimitrowicz A, Jamroz P, diCenzo GC, Gil W,Bojszczak W, Motyka A, Pogoda D and Pohl P.Fermented juices as reducing and capping agentsfor the biosynthesis of size-defined spherical goldnanoparticles. J. Saudi Chem. Soc. (2018) 22: 767-76.
(65) Ovais M, Khalil AT, Islam NU, Ahmad I, Ayaz M,Saravanan M, Shinwari ZK and Mukherjee S. Roleof plant phytochemicals and microbial enzymesin biosynthesis of metallicnanoparticles. Appl.Microbiol. Biotechnol. (2018) 102: 6799-814.
(66) Nayantara and Kaur P. Biosynthesis of nanoparticlesusing eco-friendly factories and their role in plantpathogenicity: a review. Biotechnol. Res. Innov.(2018) 2: 63-73.
(67) Kulkarni N and Muddapur U. Biosynthesis of metalnanoparticles: A Review. J. Nanotechnol. (2014)2014: 1-8.
(68) Li X, Xu H, Chen ZS and Chen G. Biosynthesisof nanoparticles by microorganisms and theirapplications. J. Nanomater. (2011) 2011: 1-16.
(69) Islam NU, Jalil K, Shahid M, Rauf A, MuhammadN, Khan A, Shah MR and Khan MA. Green synthesisand biological activities of gold nanoparticlesfunctionalized with Salix alba. Arabian J. Chem.(2019) 12: 2914-25.
(70) Marslin G, Siram K, Maqbool Q, Selvakesavan RK,Kruszka D, Kachlicki P and Franklin G. Secondarymetabolites in the green synthesis of metallicnanoparticles. Materials (2018) 11: 940.
(71) Krishnan G, Subramaniyan J, Subramani PC,Muralidharan B and Thiruvengadam D. Hesperetinconjugated PEGylated gold nanoparticles exploringthe potential role in anti-inflammation and antiproliferation during diethylnitrosamine-inducedhepatocarcinogenesis in rats. Asian J. Pharm. Sci.(2017) 12: 442-55.
(72) Shaabani E, Amini SM, Kharrazi S and TajerianR. Curcumin coated gold nanoparticles: synthesis,characterization, cytotoxicity, antioxidant activityand its comparison with citrate coated goldnanoparticles. Nanomed. J. (2017) 4: 115-25.
(73) Virmani I, Sasi C, Priyadarshini E, Kumar R, SharmaSK, Singh GP, Pachwarya RB, Paulraj R, Barabadi H,Saravanan M and Meena R. Comparative anticancerpotential of biologically and chemically synthesizedgold nanoparticles. J. Clust. Sci. (2020) 31: 867–76.
(74) Borker S and Pokharkar V. Engineering of pectincapped gold nanoparticles for delivery of doxorubicinto hepatocarcinoma cells: an insight into mechanismof cellular uptake. Artif. Cells Nanomed. Biotechnol.(2018) 46: 826-35.
(75) Kulkarni A and Rao P, Synthesis of polymericnanomaterials for biomedical applications. In:Gaharwar AK, Sant S, Hancock MJ and Hacking SA(eds.) Nanomaterials in Tissue Engineering. 1st ed.Elsevier, Netherland (2013) 27-63.
(76) Qin Y (ed). Biocompatibility testing for medicaltextile products. In: Medical Textile Materials.Woodhead Publishing: Waltham, MA, USA (2016)191-201.
(77) Yoshioka Y, Higashisaka K, and Tsutsumi Y,Biocompatibility of nanomaterials. In: Lu ZR and 17Anticancer Activity of Biogenic Gold Nanomaterials against Hepatic Cancer CellsSakuma S (eds.) Nanomaterials in Pharmacology.1st ed. Springer, USA (2016) 185-99.
(78) Lai MK, Chang CY, Lien YW and Tsiang RCC. Application of gold nanoparticles tomicroencapsulation of thioridazine. J. Control.Release (2006) 111: 352-61.
(79) Chen YS, Hung YC, Liau I and Huang GS.Assessment of the in-vivo toxicity of goldnanoparticles. Nanoscale Res. Lett. (2009) 4: 858-64.
(80) Selvaraj T, Thirunavukkarasu A, RathnaveluSM and Kasivelu G. In-vivo non-toxicity of goldnanoparticles on wistar rats. J. Clust. Sci. (2019) 30:513-9.
(81) Barabadi H, Alizadeh A, Ovais M, Ahmadi A,Shinwari ZK and Saravanan M. Efficacy of greennanoparticles against cancerous and normal celllines: a systematic review and meta-analysis. IET Nanobiotechnol. (2018) 12: 377-91.