FTIR Investigation of Secondary Structure of Reteplase Inclusion Bodies Produced in Escherichia coli in Terms of Urea Concentration

Document Type : Research article


Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran.


Recent studies suggest that reducing the induction temperature would improve the quality of some recombinant inclusion bodies (IB) by providing a native-like secondary structure and leading to an improvement in protein recovery. This study focused on optimizing the solubilization condition of Reteplase, a recombinant protein with 9 disulfide bonds. The influence of lowering induction temperature and urea concentration was investigated on the secondary structure of the recombinant protein through FTIR analysis. Induction temperature reduction decreased the percentage of helixes and loops from 49 to 8. In addition, FTIR spectroscopy corroborates the drastic impact of this parameter on Reteplase secondary structure. Even though lowering urea concentration tripled the solubility of IBs expressed at lower induction temperature, the final yield is still quite low to be considered as optimum. On the other hand, the percentage of beta strands and turns in secondary structure of dissolved proteins were proportional to urea concentration. Therefore, in case of Reteplase, protein expression at low temperature (25°C) was not efficient to improve the protein recovery yield. Future studies need to focus on using other methods of solubilizing IBs to improve protein recovery.

Graphical Abstract

FTIR Investigation of Secondary Structure of Reteplase Inclusion Bodies Produced in Escherichia coli in Terms of Urea Concentration


(1)        Upadhyay A, Murmu A, Singh A and Panda A. Kinetics  of  inclusion  body formation  and  its  correlation  with the Characteristics  of  protein  aggregates  in Escherichia coli. Microb Cell Fact. (2012): e33951.
(2)        Peternel S and Komel R. Isolation of biologically active nanomaterials (inclusion bodies) from bactrial cells. Microb Cell Fact. (2010) 9:66-82.
(3)        Peternel S, Gerdadolkin J,Gabrec-Porekar J and Komel R. Engineering inclusion bodies for non denaturing extraction of functional proteins. Microb Cell Fact. (2008) 7: 34-43.
(4)        Jevsevar S, Gaberc-Porekar V, Fonda I,  Podobnik B,  Grdadolnik J and Menart V. Production of non-classical inclusion bodies from which correctly folded protein can be extracted. Biotechnol Prog. (2005) 21: 632-639.
(5)        Singh S and Panda AK. Solubilization and refolding of bacterial inclusion body proteins. Biosci Bioeng. (2005) 4:303-310.
(6)        Vallejo L and Rinas U. Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microb Cell Fact.  (2004) 3: 11-23.
(7)        Tsumoto K, Abe R, Ejima D and ArakawaT. Non-denaturing  solubilization  of  inclusion bodies. Curr Pharm Biotechnol. (2010) 11: 309-312.
(8)        Umetsu M, Tsumoto K,  Nitta S, Adschiri T, Ejima D,  Awakara T and Kumagai I. Nondenaturing    solubilization  of  β2 microglobuline    from  inclusion  bodies  by L-arginine. Biochem Biophys Resear Communic. (2005) 328: 189-197.
(9)        Singh S, Sharma A,  Upadhyay AK, Singh A,  Garg LC and Panda AK. Solubilization  of  inclusion  body  proteins  using  n-propanol  and  its  refolding  into bioactive form. Protein Expr Purif. (2012) 81:  75-82.
(10)      Timasheff S.The control of protein stability and association by weak interactions with  water:  How  do  solvents  effect  these  processes. Annu Rev Biophys Biomol Struct. (1993) 22: 67-97.
(11)      Pace C, Trevino S,  Prabhakaran E and Scholtz JM. Protein  structure,  stability and  solubility  in  water  and  other  solvents. Philos Trans R Soc Lond B Biol Sci. (2004) 359: 1225-1235.
(12)      Pace C, Grimsley G and Scholtz JM. Denaturation of proteins by Urea and Guanidine hydrochloride, in : Buchner J, Kiefhaber T, editors. Protein  Folding Handbook. Weinheim: John Wiley & Sons, Inc; (2005) p. 45-69.
(13)      Liu H, Zhou X and Zhang Y. A  Comparative  Investigation  on  different  refolding strategies  of  recombinant  human  tissue-type  plasminogen  activator  derivative. Biotechnol Lett. (2006) 28: 457-463.
(14)      Bradford M. A Rapid and sensitive method for quantitation of microgram quantities of protein utilizing  the principle of protein-dye binding. Anal Biochem. (1976) 72: 248-254.
(15)      Fabian H, Mantele W. Handbook of vibrational spectroscopy. Vol 5. Chichester: John Wiley & Sons; (2001).
(16)      Keith O, Boris AC,Ronald W and Anthony LF. Native-like secondary structure in  Interleukin-β inclusion bodies by attenuated total reflectance FTIR. Biochemistry, (1994) 33: 2628-2634.
(17)      Halle B, Denisov VP, Modig K, Davidovic M. Protein conformational transitions as seen from the solvent: magnetic relaxation dispersion studies of water, co-solvent, and denaturant interactions with non-native proteins, : Buchner J, Kiefhaber T, editors. Protein  Folding Handbook. Weinheim: John Wiley & Sons, Inc; (2005) p.201-246.
(18)      2014, "Peak Fitters", http://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm
(19)      Cai Y, Bao J, Lao X, Zheng H, Chen J and Yu R  Computational design, functional analysis and antigenic epitope estimation of a novel hybrid of 12 peptides of hirudin and reteplase. J Mol Model. (2015) 21(9):1-9.