Evaluation of Anti-oxidant and Anti-biofilm Activities of Biogenic Surfactants Derived from Bacillus amyloliquefaciens and Pseudomonas aeruginosa

Document Type : Research article


1 Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.

2 Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.

3 Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran.

4 Department of Drug and Food Control, Faculty of Pharmacy, International Campus, Tehran University of Medical Sciences, Tehran, Iran.

5 Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.


Biosurfactants, the microbial originated surface active agents, can modify the physicochemical properties of surfaces and reduce the bacterial adhesion via changing bacterial adhesion interactions on surfaces.  They were also able to block oxidative chain reactions and might show antioxidant properties. The goal of this study was to evaluate the antioxidant and antibiofilm activities of biosurfactants which were derived from two autochthonous biosurfactant-producing strains, Bacillus amyloliquefaciens NS6 (surfactin), andPseudomonas aeruginosaMN1 (rhamnolipids). Their antioxidant activities were determined by ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) methods. Ferric thiocyanate (FTC) assay was used for determination of their lipid peroxidation inhibition capacity. Their effect to reduce the adhesion of Streptococcus mutans on polystyrene surfaces and disruption of its pre-formed biofilms were also investigated. Our results indicated that surfactin showed higher antioxidant activity than rhamnolipids and showed relatively similar efficiency to BHA that suggests it as a good alternative for synthetic antioxidants. In other hand, rhamnolipid conditioned surfaces showed higher antiadhesive and antibiofilm activity in comparison with surfactin treated surfaces.

Graphical Abstract

Evaluation of Anti-oxidant and Anti-biofilm Activities of Biogenic Surfactants Derived from Bacillus amyloliquefaciens and Pseudomonas aeruginosa


Main Subjects

(1)        Xu Q, Nakajima M, Liu Z and Shiina T. Biosurfactants for microbubble preparation and application. Int. J. Mol. Sci. (2011)  12: 462-75.
(2)        Kiran GS, Priyadharsini S, Sajayan A, Priyadharsini GB, Poulose N and Selvin J. Production of lipopeptide biosurfactant by a marine nesterenkonia sp. and its application in food industry. Front. Microbiol. (2017)  8: 1138.
(3)        Satpute SK, Zinjarde SS and Banat IM. (eds). Recent Updates on Biosurfactants in the Food Industry. In: Microbial Cell FactoriesPress, Boca Raton (2018) 1-20.
(4)        Nitschke M and Silva SSE. Recent food applications of microbial surfactants. Crit. Rev. Food Sci. Nutr. (2018)  58: 631-8.
(5)        Mnif I and Ghribi D. Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry. J. Sci. Food Agric. (2016)  96: 4310-20.
(6)        Nitschke M and Costa S. Biosurfactants in the food industry. Biosurfactants Research Trends and Applications. (2014) 177-96.
(7)        Desai JD and Banat IM. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. (1997)  61: 47-64.
(8)        Yalcin E and Cavusoglu K. Structural analysis and antioxidant activity of a biosurfactant obtained from Bacillus subtilis RW-I. Turk. J. Biochem. (2010)  35: 243-7.
(9)        Takahashi M, Morita T, Fukuoka T, Imura T and Kitamoto D. Glycolipid biosurfactants, mannosylerythritol lipids, show antioxidant and protective effects against H2O2-induced oxidative stress in cultured human skin fibroblasts. J. Oleo. Sci. (2012)  61: 457-64.
(10)      Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M and Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. (2007)  39: 44-84.
(11)      Ohadi M, Forootanfar H, Rahimi HR, Jafari E, Shakibaie M, Eslaminejad T and Dehghannoudeh G. Antioxidant potential and wound healing activity of biosurfactant produced by acinetobacter junii B6. Curr. Pharm. Biotechnol. . (2017)  18: 900-8.
(12)      Madhavi DL, Deshpande S and Salunkhe DK. Food antioxidants: Technological: Toxicological and health perspectives. CRC Press (1995).
(13)      Yehye WA, Rahman NA, Ariffin A, Hamid SBA, Alhadi AA, Kadir FA and Yaeghoobi M. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review. Eur. J. Med. Chem. (2015)  101: 295-312.
(14)      Oteiza PI, Erlejman AG, Verstraeten SV, Keen CL and Fraga CG. Flavonoid-membrane interactions: a protective role of flavonoids at the membrane surface? J. Immunol. Res. (2005)  12: 19-25.
(15)      Ferreira A, Vecino X, Ferreira D, Cruz J, Moldes A and Rodrigues L. Novel cosmetic formulations containing a biosurfactant from Lactobacillus paracasei. Colloids Surf. B Biointerfaces (2017)  155: 522-9.
(16)      Taghvaei M and Jafari SM. Application and stability of natural antioxidants in edible oils in order to substitute synthetic additives. J. Food Sci. Technol. (2015)  52: 1272-82.
(17)      Høiby N, Bjarnsholt T, Givskov M, Molin S and Ciofu O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents (2010)  35: 322-32.
(18)      Colombo APV, Magalhaes CB, Hartenbach FaRR, Do Souto RM and Da Silva-Boghossian CM. Periodontal-disease-associated biofilm: A reservoir for pathogens of medical importance. Microb. Pathog. (2016)  94: 27-34.
(19)      Marsh P and Zaura E. Dental biofilm: ecological interactions in health and disease. J. Clin. Periodontol. (2017)  44 (Suppl 18): S12-S22.
(20)      Conlon BP, Rowe SE and Lewis K. Persister cells in biofilm associated infections, in Biofilm-Based Healthcare-Associated Infections. Springer (2015) 1-9.
(21)      Arciola CR, Campoccia D and Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. (2018) 16: 397-409.
(22)      Gbejuade HO, Lovering AM and Webb JC. The role of microbial biofilms in prosthetic joint infections: a review. Acta Orthop. (2015)  86: 147-58.
(23)      Meena KR and Kanwar SS. Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Biomed. Res. Int. (2015)  2015: 1-15.
(24)      Merghni A, Dallel I, Noumi E, Kadmi Y, Hentati H, Tobji S and Ben Amor A, Mastouri M. Antioxidant and antiproliferative potential of biosurfactants isolated from Lactobacillus casei and their anti-biofilm effect in oral Staphylococcus aureus strains. Microb. Pathog. (2017)  104: 84-9.
(25)      Samadi N, Abadian N, Ahmadkhaniha R, Amini F, Dalili D, Rastkari N and Safaripour E and Mohseni FA. Structural characterization and surface activities of biogenic rhamnolipid surfactants from Pseudomonas aeruginosa isolate MN1 and synergistic effects against methicillin-resistant Staphylococcus aureus. Folia Microbiol. (Praha) (2012)  57: 501-8.
(26)      Linhardt RJ, Bakhit R, Daniels L, Mayerl F and Pickenhagen W. Microbially produced rhamnolipid as a source of rhamnose. Biotechnol. Bioeng. (1989)  33: 365-8.
(27)      Oyaizu M. Studies on products of browning reaction: antioxidative activity of products of browning reaction. Jpn. J. Nutr. Diet.  (1986)  44: 307-15.
(28)      Mhadhebi L, Mhadhebi A, Robert J and Bouraoui A. Antioxidant, anti-inflammatory and antiproliferative effects of aqueous extracts of three mediterranean brown seaweeds of the genus cystoseira. Iran. J. Pharm. Res. (2014)  13: 207-20.
(29)      Goodarzi S, Hadjiakhoondi A, Yassa N, Khanavi M and Tofighi Z. Essential oils chemical composition, antioxidant activities and total phenols of Astrodaucus persicus. Iran. J. Basic. Med. Sci. (2016)  19: 159-65.
(30)      Yassa N, Sharififar F and Shafiee A. Otostegia persica. as a source of natural antioxidants. Pharm. Biol. (2005)  43: 33-8.
(31)      Kahlmeter G, Brown D, Goldstein F, Macgowan A, Mouton J, Odenholt I, Rodloff A, Soussyh CJ, Steinbakk M, Soriano F and Stetsiouk O. European committee on antimicrobial susceptibility testing (EUCAST) technical notes on antimicrobial susceptibility testing. Clin. Microbiol. Infect. (2006)  12: 501-3.
(32)      O'toole GA. Microtiter dish biofilm formation assay. J. Vis. Exp. (2011) 47: e2437.
(33)      Yalcin E and Cavusoglu K. Structural analysis and antioxidant activity of a biosurfactant obtained from Bacillus subtilis RW-I. Turk. J. Biochem. (2010)  35: 243-7.
(34)      Tabbene O, Gharbi D, Slimene IB, Elkahoui S, Alfeddy MN, Cosette P, Mangoni ML, Jouenne T and Limam F. Antioxidative and DNA protective effects of bacillomycin D-like lipopeptides produced by B38 strain. Appl. Biochem. Biotechnol. (2012)  168: 2245-56.
(35)      Ayed HB, Bardaa S, Moalla D, Jridi M, Maalej H, Sahnoun Z, Rebai T, Jacques P,  Nasri M and Hmidet N. Wound healing and in-vitro antioxidant activities of lipopeptides mixture produced by Bacillus mojavensis A21. Process. Biochem. (2015)  50: 1023-30.
(36)      Jemil N, Ayed HB, Manresa A, Nasri M and Hmidet N. Antioxidant properties, antimicrobial and anti-adhesive activities of DCS1 lipopeptides from Bacillus methylotrophicus DCS1. BMC Microbiol. (2017)  17: 144.
(37)      Tofani D, Balducci V, Gasperi T, Incerpi S and Gambacorta A. Fatty acid hydroxytyrosyl esters: structure/antioxidant activity relationship by ABTS and in cell-culture DCF assays. J. Agric. Food Chem. (2010)  58: 5292-9.
(38)      Do Valle Gomes MZ and Nitschke M. Evaluation of rhamnolipid and surfactin to reduce the adhesion and remove biofilms of individual and mixed cultures of food pathogenic bacteria. Food control. (2012)  25: 441-7.
(39)      Van Hoogmoed CG, Van Der Mei HC and Busscher HJ. The influence of biosurfactants released by S. mitis BMS on the adhesion of pioneer strains and cariogenic bacteria. Biofouling (2004)  20: 261-7.
(40)      Shakerifard P, Gancel F, Jacques P and Faille C. Effect of different Bacillus subtilis lipopeptides on surface hydrophobicity and adhesion of Bacillus cereus 98/4 spores to stainless steel and Teflon. Biofouling (2009)  25: 533-41.
(41)      Dalili D, Amini M, Faramarzi MA, Fazeli MR, Khoshayand MR and Samadi N. Isolation and structural characterization of Coryxin, a novel cyclic lipopeptide from Corynebacterium xerosis NS5 having emulsifying and anti-biofilm activity. Colloids Surf. B Biointerfaces  (2015)  135: 425-32.
(42)      Velraeds M, Van Der Mei H, Reid G and Busscher HJ. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates. Appl. Environ. Microbiol. . (1996)  62: 1958-63.
(43)      Velraeds MM, Van De Belt-Gritter B, Busscher HJ, Reid G and Van Der Mei HC. Inhibition of uropathogenic biofilm growth on silicone rubber in human urine by lactobacilli–a teleologic approach. World J. Urol. (2000)  18: 422-6.
(44)      Velraeds MM, Van Der Mei HC, Reid G and Busscher HJ. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis to solid substrata by an adsorbed biosurfactant layer from Lactobacillus acidophilus. Urology (1997)  49: 790-4.
(45)      Mclandsborough L, Rodriguez A, Perez-Conesa D and Weiss J. Biofilms: at the interface between biophysics and microbiology. Food Biophys. (2006)  1: 94-114.