Green Synthesis and Characterization of Bismuth Oxide Nanoparticle Using Mentha Pulegium Extract

Document Type : Research article

Authors

1 Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.

2 Department of Nanochemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.

Abstract

In recent years, green synthesis of nanoparticles has attracted a great attention because of medicine and biological applications. In this work, bismuth oxide nanoparticles (Bi2O3 NP) was prepared via green synthesis using mentha pulegium aqueous extract after 24 h at 90°C. The product was characterized by ultraviolet-visible (UV-VIS) spectrophotometer, Fourier transform infrared (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and diffuse reflection spectroscopy (DRS). The antibacterial activities of the samples were determined against Salmonella and Escherichia coli (E.Coli) as Gram-negative bacterial and Staphylococcus aureus (S.aureus) as Gram-positive bacterial. The objectives of this study were the green synthesis of bismuth oxide nanoparticles using aqueous extract with a good potential for UV blocking and antibacterial activity. Based on the obtained results, Bi2O3 NPs can have a good candidate for different applications.

Graphical Abstract

Green Synthesis and Characterization of Bismuth Oxide Nanoparticle Using Mentha Pulegium Extract

Keywords

Main Subjects


(1) Tabrez S, Musarrat J and Al-khedhairy AA. Colloids and surfaces B: biointerfaces countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status. Colloids Surf B Biointerfaces. (2016) 146: 70–83.
(2) Falcaro P, Ricco R, Yazdi A, Imaz I, Furukawa S, Maspochb D, Ameloot R, Evans JD and Doonan CJ. Application of metal and metal oxide nanoparticles@ MOFs. Coord. Chem. Rev. (2016) 307: 237–54.
(3) Fan HT, Pan SS, Teng XM, Ye C, Li GH, and Zhang LD. δ-Bi2 O3 thin films prepared by reactive sputtering: Fabrication and characterization. Thin Solid Films (2006) 513: 142-7.
(4) Li R, Chen W, Kobayashi H and Ma C. Platinumnanoparticle-loaded bismuth oxide: an efficient plasmonic photocatalyst active under visible light. Green Chem. (2010) 12: 212-5.
(5) Raza W, Haque MM, Muneer M, Harada T and Matsumura M. Synthesis, characterization and photocatalytic performance of visible light induced bismuth oxide nanoparticle. J. Alloys. Compd. (2015) 648: 641-60.
(6) Gong Y, Ji W, Zhang L, Xie B, and Wang H. Performance of (La,Sr)MnO3 cathode based solid oxide fuel cells: effect of bismuth oxide sintering aid in silver paste cathode current collector. J. Power Sources (2011) 196: 928-34.
(7) Gou X, Li R, Wang G, Chen Z and Wexler D. Roomtemperature solution synthesis of Bi2 O3 nanowires for gas sensing application. Nanotechnology (2009) 20: 495-501.
(8) Malik P and Chakraborty D. Bi2 O3 -Catalyzed Oxidation of Aldehydes with t-BuOOH. Tetrahedron Lett. (2010) 51: 3521-3.
(9) Xia F, Xu X, Li X, Zhang L, Zhang L, Qiu H, Wang W, Liu Y and Gao J. Preparation of bismuth nanoparticles in aqueous solution andi catalytic performance for the reduction of 4-nitrophenol. Ind. Eng. Chem. Res. (2014) 53: 10576−82.
(10) Schlesinger M, Weber M, Schulze S, Hietschold M and Mehring M. Metastable β-Bi2 O3 nanoparticles with potential for photocatalytic water purification using visible light irradiation. Chemistry (2013) 2: 146–55.
(11) Mahmouda WE and Al-Ghamdia AA. Synthesis and properties of bismuth oxide nanoshell coated polyaniline nanoparticles for promising photovoltaic properties. Polym. Adv. Technol. (2011) 22: 877–81. (12) Oviedo MJ, Contreras OE, Rosenstein Y, VazquezDuhalt R, Macedo ZS, Carbajal-Arizaga GG and Hirata GA. New bismuth germanate oxide nanoparticle material for biolabel applications in medicine. J. Nanomater. (2016) 2016: 1-10.
(13) Abudayyak M, Oztas E, Arici M and Ozhan G. Investigation of the toxicity of bismuth oxide nanoparticles in various cell lines. Chemosphere (2017) 169: 117-123.
(14) Jassim AMN, Farhan SA, Salman, JAS. Khalaf KJ, Al Marjani MF and Mohammed MT. Study the antibacterial effect of bismuth oxide and tellurium nanoparticles. Int. J. Chem. Biol. Sci. (2015) 1: 81-4. (15) Mehring M. From molecules to bismuth oxidebased materials: Potential homo- and heterometallic precursors and model compounds. Coord. Chem. Rev. (2007) 251: 974-1006.
(16) Perez-Mezcua D, Sirera R, Jimenez R, Bretos I, De Dobbelaere C, Hardy A, Baelc MKV, and Lourdes Calzada M. A UV-absorber bismuth(III)-Nmethyldiethanolamine complex as a lowtemperature precursor for bismuth-based oxide thin films. J Mater. Chem. C. (2014) 2: 8750–60.
(17) Hou J, Yang C, Wang Z, Zhou W, Jiao S and Zhu H. In situ synthesis of α-β-phase heterojunction on Bi2 O3 nanowireswith exceptional visible-light photocatalytic performance. Appl. Catal. B. (2013) 142–143: 504–11.
(18) Solanki PR, Singh J, Rupavali B, Tiwari S and Malhotr BD. Bismuth oxide nanorods based immunosensor for mycotoxin detection. Mater. Sci. Eng. C. (2017) 70: 564–71.
(19) Xia F, Xu X, Li X, Zhang L, Zhang L, Qiu H, Wang W, Liu Y and Gao J. Preparation of bismuth nanoparticles in aqueous solution and its catalytic performance for the reduction of 4-Nitrophenol. Ind. Eng. Chem. Res. (2014) 53: 10576–82.
(20) La J, Huang Y, Luo G, Lai J, Liu C and Chu G. Synthesis of bismuth oxide nanoparticles by solution combustion method. Particul. Sci. Technol. (2012) 31: 287-90.
(21) Wu J, Qin F, Lu Z, Yang HJ and Chen R. Solvothermal synthesis of uniform bismuth nanospheres using poly(N-vinyl-2-pyrrolidone) as a reducing agent. Nanoscale Res. Lett. (2011) 6: 66-74.
(22) Zulkifli ZA, Razak KA, Rahman WNWA and Abidin SZ. Synthesis and characterisation of bismuth oxide nanoparticles using hydrothermal method: the effect of reactant concentrations and application in radiotherapy. J. Phys. Conf. Ser. (2018) 1082: 012103.
(23) Torrisi L, Silipigni L, Restuccia N, Cuzzocrea S, Cutroneo M, Barreca F, Fazio B, Di Marco G and Guglielmino S. Laser-generated bismuth nanoparticles for applications in imaging and radiotherapy. J. Phys. Chem. Solids (2018) 119: 62- 70.
(24) Anandan S and Wu JJ. Microwave Assisted Rapid Synthesis of Bi2 O3 Short Nanorods. Mater. Lett. (2009) 63: 2387-9.
(25) Mallahi M, Shokuhfar A, Vaezi MR, Esmaeilirad A and Mazinani V. Synthesis and characterization of bismuth oxide nanoparticles via sol-gel method. AJER (2014) 3: 162-5.
(26) Mädler L and Pratsinis SE. Bismuth oxide nanoparticles by flame spray pyrolysis. J. Am. Ceram Soc. (2004) 85: 1713–8.
(27) Carotenuto G, Hison CL, Capezzuto F and Palomba M. Synthesis and thermoelectric characterisation of bismuth nanoparticles. J. Nanoparticle Res. (2009) 11: 1729-38.
(28) Schulz S, Heimann S, Wölper C and Assenmacher W. Synthesis of bismuth pseudocubes by thermal decomposition of Bi2 Et4 . Chem. Mater. (2012) 24: 2032–9.
(29) Huang YJ, Zheng YQ, Zhu HL and Wang JJ. Hydrothermal synthesis of bismuth(III) coordination polymer and its transformation to nano α-Bi2 O3 for photocatalytic degradation. J. Solid State Chem. (2016) 239: 274-81.
(30) Gujar TP, Shinde VR, Lokhande CD, Mane RS and Han SH. Formation of highly textured (111) Bi2 O3 films by anodization of electrodeposited bismuth films. Appl. Surf. Sci. (2006) 252: 2747-51.
(31) Gujar TP, Shinde VR and Lokhande CD. The influence of oxidation temperature on structural, optical and electrical properties of thermally oxidized bismuth oxide films. Appl. Surf. Sci. (2008) 254: 4186- 90. (32) Kim H, Jin C, Park S, Lee WI, Chin IJ and Lee C. Structure and optical properties of Bi2 S3 and Bi2 O3 nanostructures synthesized via thermal evaporation and thermal oxidation routes. Chem. Eng. J. (2013) 215: 151-6.
(33) Nazari P, Faramarzi MA, Sepehrizadeh Z, Mofid MA, Bazaz RD and Shahverdi AR. Biosynthesis of bismuth nanoparticles using Serratia marcescens isolated from the Caspian Sea and their characterization. IET Nanobiotechnol. (2012) 6: 58- 62.
(34) Song JY and Kim BS. Biological synthesis of bimetallic Au/Ag nanoparticles using Persimmon (Diospyros kaki) leaf extract. Korean J. Chem. Eng. (2009) 25: 808–11.
(35) Monda S, Roy N, Laskar RA, Sk I, Basu S, Mandal D and Begum NA. Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves. Colloid Surf. B. (2011) 82: 497–504.
(36) Dobrucka R. Synthesis of titanium dioxide nanoparticles using Echinacea purpurea Herba. Iran. J. Pharm. Res. (2017) 16: 753-59.
(37) Aromal SA and Philip D. Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size dependent catalytic activity. Spectrochim. Acta A. (2012) 97: 1–5.
(38) Tavakoli F, Salavati-Niasari M and Mohandes F. Green synthesis and characterization of graphene nanosheets. Mater. Res. Bull. (2015) 63: 51–7.
(39) Kelkawi AHA, Abbasi Kajani A and Bordbar AK. Green synthesis of silver nanoparticles using Mentha pulegium and investigation of their antibacterial, antifungal and anticancer activity. IET Nanobiotechnol. (2017) 11: 370-6.
(40) Jafari A, Pourakbar L, Farhadi K, Mohamadgolizad L and Goosta Y. Biological synthesis of silver nanoparticles and evaluation of antibacterial and antifungal properties of silver and copper nanoparticles. Turk. J. Biol. (2015) 39: 556-561.
(41) Hajiashrafi S and Motakef-Kazemi N. Green synthesis of zinc oxide nanoparticles using parsley extract. Nanomed. Res. J. (2018) 3: 44-50.
(42) Becheri A, Durr M, Nostro PL and Baglioni P. Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UVabsorbers. J. Nanopart. Res. (2008) 10: 679–89.
(43) Im YM, Oh TH, Nathanael JA and Jang SS. Effect of ZnO nanoparticles morphology on UV blocking of poly (vinylalcohol)/ZnO composite nanofibers. Mater Lett. (2015) 147: 20–4.
(44) Bera KK, Majumdar M, Chakraborty M and Bhattachary SK. Phase control synthesis of α, β and α/β Bi2 O3 hetero-junction with enhanced and synergistic photocatalytic activity on degradation of toxic dye, Rhodamine-B under natural sunlight. J. Hazard. Mater. (2018) 352: 182-91.