(1) Amidon GL, Lennernas H, Shah VP and CrisonJR. A Theoretical basis for a biopharmaceutic drugclassification: The correlation of in-vitro drugproduct dissolution and in-vivo bioavailability.Pharm. Res. (1995) 12: 413-20.
(2) Tsume Y, Matsui K, Searls AL, Takeuchi S, AmidonGE, Sun D and Amidon GL. The impact ofsupersaturation level for oral absorption of BCS classIIb drugs, dipyridamole and ketoconazole, using invivo predictive dissolution system: GastrointestinalSimulator (GIS). Eur. J. Pharm. Sci. (2017) 102:126–39.
(3) Tsume Y, Mudie DM, Langguth P, Amidon GE andAmidon GL. The biopharmaceutics classificationsystem: subclasses for in-vivo predictive dissolution(IPD) methodology and IVIVC. Eur. J. Pharm. Sci.(2014) 57: 152–63.
(4) Tsume Y, Takeuchi S, Matsui K, Amidon GE andAmidon GL. In-vitro dissolution methodology, minigastrointestinal simulator (mGIS), predicts better invivo dissolution of a weak base drug, dasatinib. Eur.J. Pharm. Sci. (2015) 76: 203–12.
(5) Zur M, Hanson AS and Dahan A. The complexity ofintestinal permeability: Assigning the correct BCSclassification through careful data interpretation.Eur. J. Pharm. Sci. (2014) 61: 11–7.
(6) Zakeri-Milani P, Barzegar-Jalali M, Azimi M andValizadeh H. Biopharmaceutical classification ofdrugs using intrinsic dissolution rate (IDR) and ratintestinal permeability. Eur. J. Pharm. Biopharm.(2009) 73: 102–6.
(7) Skelly JP, Amidon GL, Barr WH, Benet LZ, CarterJE, Robinson JR, Shah VP and Yacobi A. In-vitro andin-vivo testing and correlation for oral controlled/modified release dosage forms. Report of the 2ndworkshop held december 1988, Washington, Dc,U.S.A. J. Control Release. (1990) 14: 95-106.
(8) Hens B, Sinko PD, Job N, Dean M, Al-Gousous J andSalehi N. Formulation predictive dissolution (fPD)testing to advance oral drug product development:An introduction to the US FDA funded ‘21st CenturyBA/BE’ project. Int. J. Pharm. (2018) 548: 120–7.
(9) Nagabandi V, Chandragiri AK, Thota S and KatakamP. Enhancement of dissolution rate of naproxen bylipid based solid dispersions. J. Pharm. Sci. Res.380Optimized chitosan-coatedliposomes loaded by furosemide(2014) 6: 78–82.
(10) Williams HD, Trevaskis NL, Charman SA, ShankerRM, Charman WN, Pouton CW and PorterCJH. Strategies to address low drug solubility indiscovery and development. Pharmacol. Rev.(2013) 65: 315–499.
(11) Horter D and Dressman JB. Influence ofphysicochemical properties on dissolution of drugsin the gastrointestinal tract. Adv. Drug Deliv. Rev.(1997) 25: 3–14.
(12) Sun J, Wang F, Sui Y, She Zh, Zhai W, Wang Chand Deng Y. Effect of particle size on solubility,dissolution rate, and oral bioavailability: evaluationusing coenzyme Q10 as nakednanocrystals. Int. J.Nanomedicine. (2012) 7: 5733-44.
(13) Li X, Uehara S, Sawangrat K, Morishita M,Kusamori K, Katsumi H, Sakane T and YamamotoA. Improvement of intestinal absorption ofcurcumin by cyclodextrins and the mechanismsunderlying absorption enhancement. Int. J. Pharm.(2018) 535: 340–9.
(14) Liu T, Wan X, Luo Zh, Liu Ch, Quan P, Cun D andFang L. A donepezil/cyclodextrin complexationor4dispersible film: Effect of cyclodextrin on tastemasking based on dynamic process and in-vivodrug absorption. Asian J. Pharm. Sci. (2018) 1–10.
(15) Eerdenbrugh BV, Martens JA, Speybroeck MV,Mols R, Houthoofd K, Froyen L, Humbeeck JV,Augustijns P and Mooter GVd. Itraconazole/TPGS/Aerosil 200 solid dispersions characterization,physical stability and in-vivo performance. Eur. J.Pharm. Sci. (2009) 38: 270–8.
(16) Wilson V, Lou X, , Osterling DJ, Stolarik DF,Jenkins G, Gao W, Zhang GGZ and Taylor LS.Relationship between amorphous solid dispersionin-vivo absorption and in-vitro dissolution: phasebehavior during dissolution, speciation, andmembrane mass transport. J. Control. Release.(2018) 292: 172–82.
(17) Jermain SV, Brough Ch and Williams RO.Amorphous solid dispersions and nanocrystaltechnologies for poorly water-soluble drugdelivery–An update. Int. J. Pharm. (2018) 535:379–92.
(18) Zhaojie M, Jingkai G, Ming Zh, Shengnan W,Xiaojia B, Hatch GM and Li Ch. Amorphous soliddispersion of berberine with absorption enhancerdemonstrates a remarkable hypoglycemic effectvia improving its bioavailability. Int. J. Pharm.(2014) 467: 50–9.
(19) Medarević D, Cvijić S and Ibrić S. Assessingthe potential of solid dispersions to improvedissolution rate and bioavailability of valsartan: invitro-in-silico approach. Eur. J. Pharm. Sci. (2018)124: 188–98.
(20) Ewing AV, Wray PS, Clarke GS and Kazarian SG.Evaluating drug delivery with salt formation:studied Drug disproportionation in situ by ATRFTIR imaging and Raman mapping. J. Pharm.Biomed. Anal. (2015) 111: 248–56.
(21) Serajuddin ATM. Salt formation to improve drugsolubility. Adv. Drug Deliv. Rev. (2007) 59: 603 –16.
(22) Tran PHL, Tran TTD and Lee BJ. Enhancedsolubility and modified release drugs of poorlywater-soluble via self-assembled gelatin–oleic acidnanoparticles. Int. J. Pharm. (2013) 455: 235–40.
(23) Leuner Ch and Dressman J. Improving drugsolubility for oral delivery using solid dispersions.Eur. J. Pharm. Biopharm. (2000) 50: 47-60.
(24) Junyaprasert VB and Morakul B. Nanocrystalsfor enhancement of oral bioavailability of poorlywater-soluble drugs. Asian J. Pharm. Sci. (2015)10: 13-23.
(25) Ge L, Jiang L, He X, Zhang Y, Zhang Y, Chai F,Webster TJ and Zheng Ch. A dabigatran etexilatephospholipid complex nanoemulsion system forfurther oral bioavailability by reducing drugleakage in the gastrointestinal tract. Nanomedicine(2018) 14: 1455–64.
(26) Desai J and Thakkar H. Enhanced oralbioavailability and brain uptake of Darunavir usinglipid nanoemulsion formulation. Colloids Surf. BBiointerfaces (2019) 175: 143–149.
(27) Gao Y, Qi X, Zheng Y, Ji H, Wu L, Zheng N andTang J. Nanoemulsion enhances α-tocopherolsuccinate bioavailability in rats. Int. J. Pharm.
(2016)515: 506–14.
(28) Li H, Zhao XB, Ma Y, Zhai GX, Li LB and LouHX. Enhancement of gastrointestinal absorption ofquercetin by solid lipid nanoparticles. J. ControlRelease (2009) 133: 238–44.
(29) Zhao M, Lee SH, Song JG, Kim HY and Han HK.Enhanced oral absorption of sorafenib via the layerby-layer deposition of a pH-sensitive polymer andglycol chitosan on the liposome. Int. J. Pharm.(2018) 544: 14–20.
(30) Cui M, Wu W, Hovgaard L, Lu Y, Chen D and QiJ. Liposomes containing cholesterol analoguesof botanical origin as drug delivery systems toenhance the oral absorption of insulin. Int. J.Pharm. (2015) 489: 277–84.
(31) Agarwal S, Muniyandi P, Maekawa T and Kumar DS.Vesicular systems employing natural substances aspromising drug candidates for MMP inhibition inglioblastoma: A nanotechnological approach. Int.J. Pharm. (2018) 551: 339–61.
(32) Wang WX, Feng ShS and Zheng CH. A comparison 381Moslehi M et al. / IJPR (2020), 19 (1): 366-382between conventional liposome and drugcyclodextrin complex in liposomesystem. Int. J.Pharm. (2016) 513: 387-92.
(33) Pu C, Tang W, Li X, Li M and Sun Q. Stabilityenhancement efficiency of surface decoration oncurcumin-loaded liposomes: Comparison of guargum and its cationic counterpart. Food Hydrocoll.(2019) 87: 29-37.
(34) Cortesi R, Esposito E, Gambarin S, Telloli P,Menegatti E and Nastruzzi C. Preparation ofliposomes by reverse-phase evaporation using
alternative organic solvents. J. Microencapsul.(1999) 16: 251-6.
(35) Gregoriadis G, Da Silva H and Florence AT. Aprocedure for the efficient entrapment of drugs indehydration-rehydration liposomes (DRVs). Int. J.Pharm. (1990) 65: 235-42.
(36) Kawano K, Takayama K, Nagai T and Maitani Y.Preparation and pharmacokinetics of pirarubicinloaded dehydration–rehydration vesicles. Int. J.Pharm. (2003) 252: 73–9.
(37) Stano P, Bufali S, Pisano C, Bucci F, Barbarino M,Santaniello M, Carminati P and Luisi PL. NovelCamptothecin analogue (Gimatecan)-containingliposomes prepared by the ethanol injection method. J. Liposome Res. (2004) 14: 87–109.
(38) Ran R, Middelberg APJ and Zhao CX. Microfluidicsynthesis of multifunctional liposomes for tumourtargeting. Colloids Surf. B Biointerfaces (2016)148: 402–10.
(39) Chiba M, Miyazaki M and Ishiwata Sh. Quantitative analysis of the lamellarity of giant liposomes prepared by the inverted emulsion method. Biophys. J. (2014) 107: 346–54.
(40) Li M, Du Ch, Guo N, Teng Y, Meng X, Sun H, LiSh, Yu P and Galons H. Composition design andmedical application of liposomes. Eur. J. Med.Chem. (2019) 164: 640-653.
(41) Güven A, Ortiz M, Constanti M and O’Sullivan CK.Rapid and efficient method for the size separationof homogeneous fluorescein-encapsulatingliposomes. J. Liposome Res. (2009) 19: 148–54.
(42) Woodle MC. Sterically stabilized liposometherapeutics. Adv. Drug Del. Rev. (1995) 16: 249-65.
(43) Saesoo S, Bunthot S, Sajomsang W, Gonil P, PhunpeeS, Songkhum P, Laohhasurayotin K, WutikhunT, Yata T, Ruktanonchai UR and Saengkrit N.Phospholipid-chitosan hybrid nanoliposomespromoting cell entry for drug delivery againstcervical cancer. J. Colloid Interface Sci. (2016)480: 240–8.
(44) Socaciu C, Lausch C and Diehl HA. Carotenoids inDPPC vesicles: membrane dynamics. Spectrochi.Ac. Part A. (1999) 55: 2197-2289.
(45) Tan Ch, Feng B, Zhang X, Xia W and Xia Sh.Biopolymer-coated liposomes by electrostaticadsorption of chitosan (chitosomes) as noveldelivery systems for carotenoids. Food Hydrocoll.
(2016) 52: 774-84.
(46) Zhou F, Xu T, Zhao Y, Song H, Zhang L, Wu Xand Lu B. Chitosan-coated liposomes as deliverysystems for improving the stability and oralbioavailability of acteoside. Food Hydrocoll.(2018) 83: 17-24.
(47) Palazzo C, Dogne JM, Laloy J, Delvigne AS, NysG, Fillet M, Pequeux Ch, Foidart JM, Evrard B andPiel G. Development of injectable liposomes anddrug-in-cyclodextrin-in-liposomeformulationsencapsulating estetrol to prevent cerebral ischemiaof premature babies. Eur. J. Pharm. Sci. (2019)127: 52–9.
(48) Li X, Anton N, Arpagaus C, Belleteix F andVandamme TF. Nanoparticles by spray dryingusing innovative new technology: The Büchi NanoSpray Dryer B-90. J. Control. Release. (2010) 147:304–10.
(49) Lo YL, Tsai JC and Kuo JH. Liposomes anddisaccharides as carriers in spray-dried powderformulations of superoxide dismutase. J. ControlRelease. (2004) 94: 259 – 72.
(50) Chen KH, Di Sabatino M, Albertini B, PasseriniN and Kett VL. The effect of polymer coatings on physicochemical properties of spray-driedliposomes for nasal delivery of BSA. Eur. J.Pharm. Sci. (2013) 50: 312–22.(51 Salade L, Wauthoz N, Vermeersch M, Amighi K andGoole J. Chitosan-coated liposome dry-powderformulations loaded with ghrelin for nose-to-braindelivery. Eur. J. Pharm. Biopharm. (2018) 129:257–66.
(52) Darandale SS and Vavia PR. Design of agastroretentive mucoadhesive dosage form offurosemide for controlled release. Act Pharm. Sin.B. (2012) 2: 509–517.
(53) Shariare MH, Altamimi MA, Marzan AL, TabassumR, Jahan B, Reza HM, Rahman M, Ahsan GU andKaz M. In-vitro dissolution and bioavailabilitystudy of furosemide nanosuspension preparedusing design of experiment (DoE). Saudi Pharm.J. (2019) 27: 96–105.
(54) Quinn PJ. Is the Distribution of α-tocopherol inmembranes consistent with its putative functions?Biochemistry (2004) 69: 58-66.
(55) Smith EA and Dea PK. Differential scanningcalorimetry studies of phospholipid membranes:the interdigitated gel phase. In: Applicationsof Calorimetry in a Wide Context–DifferentialScanning Calorimetry, Isothermal Titration 382Optimized chitosan-coated liposomes loaded by furosemideCalorimetry and Microcalorimetry. 1st edition,InTech, Rijeka (Croatia) (2013).
(56) Vanic´Z, Planinšek O, Škalko-Basnet N and Tho I.Tablets of pre-liposomes govern in situ formationof liposomes: Concept and potential of the noveldrug delivery system. Eur. J. Pharm. Biopharm.(2014) 88: 443–54.
(57) Radwan SS, Sokar MS, Abdelmonsif DA and ElKamel H. Mucopenetrating nanoparticles forenhancement of oral bioavailability of furosemide:in-vitro and in-vivo evaluation/sub-acute toxicity study. Int. J. Pharm. (2017) 526: 366–79.