Antidiabetic Properties of Hydroalcoholic Leaf and Stem Extract of Levisticum officinale: An implication for α-amylase Inhibitory Activity of Extract Ingredients through Molecular Docking

Document Type : Research article

Authors

Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.

Abstract

Levisticum officinale (Apiaceae) is a favorite food spice. Iranian folk medicine claims that it has a prominent antidyslipidemic property but this is not documented scientifically so far. This study evaluated this and the other antidiabetic aspects of the stem and leaf hydroalcoholic extract of it (LOE). Regarding to oral glucose tolerance test results, LOE (500 mg/kg) administration 30 min before glucose loading significantly decreased the blood glucose level (13%) at 90 min in male rats. Additionally LOE treatment (500 mg/kg, orally, once a day) for 14 days significantly reduced the serum glucose level (24.97%) and markedly improved the lipid profile and the insulin, creatinine, alanine aminotransferase and aspartate aminotransferase serum levels in diabetic rats. Moreover, LOE effectively amended the impaired antioxidant status and ameliorated lipid peroxidation in the plasma and pancreas and liver tissues of diabetics. Also, 14 days LOE treatment, significantly decreased the renal sodium-glucose cotransporter 2 and facilitated glucose transporter 2 (GLUT2) mRNA levels and GLUT2 gene expression in the enterocytes of jejunum tissue in comparison with diabetic untreated rats. HPLC method revealed the presence of chlorogenic acid, rosmarinic acid, caffeic acid, quercetin and luteolin and GC-MS analysis detected bioactive compounds like phthalides, thymol, phytol, hexanoic acid, carene and menthofuran. LOE showed α-amylase (αΑ) inhibitory activity and in silico studies predicted that among extract ingredients luteolin, quercetin, rosmarinic, caffeic and hexanoic acids have the greatest αΑ inhibition potecy. Thus, current results justify antidyslipidemic value of L. officinale and shed light on more antidiabetic health benefits of it.

Graphical Abstract

Antidiabetic Properties of Hydroalcoholic Leaf and Stem Extract of Levisticum officinale: An implication for α-amylase Inhibitory Activity of Extract Ingredients through Molecular Docking

Keywords

Main Subjects



(1) Mozaffarian V. Flora of Iran (Umbelliferae Family),Tehran, Research Institute of Forests and Rangelands(2007).
(2) Segebrecht S and Schilcher H. Ligustilide: guidingcomponent for preparations of Levisticum officinaleroots. Planta medica (1989) 55: 572-73.
(3) Yarnell E. Botanical medicines for the urinary tract.World J. Urol. (2002) 20: 285-93.
(4) Shafaghat A. Chemical constituents, antimicrobialand antioxidant activity of the hexane extract fromroot and seed of Levisticum persicum Freyn andBornm. J. Med. Res. (2011) 5: 5127-31.
(5) Gholamhoseinian A, Moradi MN and Sharififar F.Screening the methanol extracts of some Iranianplants for acetylcholinesterase inhibitory activity.Res. Pharm. Sci. (2009) 4: 105-12.
(6) Gholamhoseinian A, Shahouzehi B and Sharififar F.Inhibitory effect of some plant extracts on pancreaticlipase. Int. J. Pharmacol. (2010) 6: 18-24.
(7) Gholamhoseinian A, Fallah H, Sharifi-far F andMirtajaddini M. The inhibitory effect of someIranian plants extracts on the alpha glucosidase.Iran. J. Basic Med. Sci. (2008) 11: 1-9.
(8) Bogucka-Kocka A, Smolarz H and Kocki J. Apoptoticactivities of ethanol extracts from some Apiaceae onhuman leukaemia cell lines. Fitoterapia (2008) 79:487-97.
(9) Lotfian Sargazi M, Saravani R and Shahraki A.Hydroalcoholic Extract of Levisticum officinaleIncreases cGMP Signaling Pathway by DownRegulating PDE5 Expression and Induction ofApoptosis in MCF-7 and MDA-MB-468 BreastCancer Cell Lines. Iran. Biomed. J. (2019) 23: 280-6.
(10) Mohamadi N, Rajaei P, Moradalizadeh M and AmiriMS. Essential oil composition and antioxidantactivity of Levisticum officinale Koch. at variousphenological stages. J. Med. Plants (2017): 16: 45-55.
(11) Miran M, Monsef Esfahani H, Moridi Farimani M,Ali Ahmadi A and Nejad Ebrahimi S. Essential oilcomposition and antibacterial activity of Levisticumofficinale Koch at differentdevelopmental stages.J. Essent. Oil- Bear. Plants (2018) 21: 1051-5.
(12) Ciocarlan A, Dragalin I, Aricu A, Lupascu L,Ciocarlan N and Popescu V. Chemical compositionand antimicrobial activity of the Levisticumofficinale W.D. Koch essential oil. Chem. J.Moldovo (2018) 13: 63-68.
(13) Tomsone L, Kruma Z, Talou T and Zhao TM.Natural antioxidants of horsradish and lovageextracted by accelerated solvent extraction. JHED(2015) 10: 16-24.
(14) Chakrabarti R, Damarla RKB, Mullangi R, SharmaVM, Vikramadithyan RK and Rajagopalan R.Insulin sensitizing of Indigofera mysorensis. J.Ethnopharmacol. (2006) 105: 102-6.
(15) Boivin GP, Bottomley MA, Schim PA, Goss L and 249Antidiabetic Properties of Levisticum officinaleGrobe N. Physiologic, behavioral, and histologicresponses to various euthanasia methods inC57BL/6NTac male mice. J. Am. Assoc. Lab.Anim. Sci. (2017) 56: 69-78.
(16) Honari N, Pouraboli I and Gharbi S.Antihyperglycemic property and insulin secretingactivity of hydroalcoholic shoot extract of Thymuscaramanicus Jalas: A wild predominant source offood additive in folk medicine. J. Func. Foods(2018) 46: 128-35.
(17) Tatsuki R, Satoh K, Yamamoto A, Hoshi K andIchihara K. Lipid peroxidation in the pancreas and other organs in streptozotocin diabetic rats. JPN. J.Pharmacol. (1997) 75: 267-73.
(18) Aebi H. Catalase In-vitro. Methods Enzymol. (1984)105: 121-6.
(19) Giannopolitis CN and Ries SK. Superoxidedismutases I. Occurrence in higher plants. PlantPhysiol. (1977) 59: 309-14.
(20) Bradford MM. A rapid and sensitive method forthe quantitation of microgram quantities of proteinutilizing the principle of protein-dye binding. Anal.Biochem. (1976) 72: 248-54.
(21) Ohkawa H, Ohishi N and Yagi K. Assay for lipidperoxides in animal tissues by thiobarbituric acidreaction. Anal. Biochem. (1979) 95: 351-8.
(22) Jamall IS and Smith JC. Effects of cadmium onglutathione peroxidase, superoxide dismutase,and lipid peroxidation in the rat heart: a possiblemechanism of cadmium cardiotoxicity. Toxicol.Appl. Pharmacol. (1985) 80: 33-42.
(23) Kurtel H, Granger DN, Tso P and Grisham MB.Vulnerability of intestinal interstitial fluid tooxidant stress. J. Physiol. Gastrointest. LiverPhysiol. (1992) 263: G573-G578.
 (24) Livak KJ and Schmittgen TD. Analysis of relativegene expression data using real-time quantitativePCR and the 2− ΔΔCT method. Methods (2001)25: 402-8.
(25) Giancarlo S, Rosa LM, Nadjafi F and FrancescoM. Hypoglycaemic activity of two spices extracts:Rhus coriaria L. and Bunium persicum Boiss. Nat.Prod. Res. (2006) 20: 882-6.
(26) Harbone JB. Phytochemical methods, London,Chapman and Hall, Ltd (1973).
(27) Singleton VL, Orthofer R and Lamuela-RaventósRM. Analysis of total phenols and other oxidationsubstrates and antioxidants by means of folinciocalteu reagent. Methods Enzymol. (1999) 299:152-78.
(28) Kumazawa S, Hamasaka T and Nakayama T.Antioxidant activity of propolis of variousgeographic origins. Food Chem. (2004) 84: 329-39.
(29) Ziedan NI, Hamdy R, Cavaliere A, Kourti M,Prencipe F, Brancale A, Jones AT and Westwell AD.Virtual screening, SAR and discovery of 5-(indole3-yl)-2-[(2-nitrophenyl) amino][1,3,4]oxadiazoleas a novel Bcl-2 inhibitor. Chem. Biol. Drug Des.(2017) 90: 1–9.
(30) Hussein WM, Islam NU, Guddat LW, Schenk G andMcGeary RP. Penicillin inhibitors of purple acidphosphatase. Bioorg. Med. Chem. Lett. (2012) 22:2555–59.
(31) Heidarpour O, Souri MK and Omidbaigi R.Changes in content and constituents of essentialoil in different plant parts of lovage (Levisticumofficinale Koch. Cv. Budakalaszi) cultivated inIran. J. Essent. Oil- Bear. Plants (2013) 16: 318-22.
(32) Abbate SL and Brunzell JD. Pathophysiology ofhyperlipidemia in diabetes mellitus. J. Cardiovasc.Pharmacol. (1990) 16: S1-S7.
(33) Concepción MN, Pilar MM, Martin A, JiménezJ and Utrilla MP. Free radical scavenger andantihepatotoxic activity of Rosmarinus tomentosus.Planta Medica (1993) 59: 312-14.
(34) de Sotillo DVR and Hadley M. Chlorogenic acidmodifies plasma and liver concentrations of:cholesterol, triacylglycerol, and minerals in (fa/fa)Zucker rats. J. Nutr. Biochem. (2002) 13: 717-26.
(35) Johnston KL, Clifford MN and Morgan LM. Coffeeacutely modifies gastrointestinal hormone secretionand glucose tolerance in humans: glycemic effects
of chlorogenic acid and caffeine. Am. J. Clin. Nutr.(2003) 78: 728-33.
(36) Runtuwene J, Cheng K-C, Asakawa A, Amitani H,Amitani M, Morinaga A, Takimoto Y, KairupanBHR and Inui A. Rosmarinic acid ameliorateshyperglycemia and insulin sensitivity in diabeticrats, potentially by modulating the expressionof PEPCK and GLUT4. Drug des. Devel. Ther.(2016) 10: 2193-202.
(37) Vessal M, Hemmati M and Vasei M. Antidiabeticeffects of quercetin in streptozocin-induceddiabetic rats. Comp. Biochem. Physiol. Part C:Toxicol. Pharmacol. (2003) 135: 357-64.
(38) Saravanan S and Pari L. Role of thymol onhyperglycemia and hyperlipidemia in high fat dietinduced type 2 diabetic C57BL/6J mice. Eur. J.Pharmacol. (2015) 761: 279-87.
(39) Elmazar MM, El-Abhar HS, Schaalan MF andFarag NA. Phytol/Phytanic acid and insulinresistance: potential role of phytanic acid proven bydocking simulation and modulation of biochemicalalterations. PLoS ONE (2013) 8: e45638.
(40) Joost H and Steinfelder H. Insulin-like stimulationof glucose transport in isolated adipocytes by fattyacids. Biochem. Biophys. Res. Commun. (1985)
250Ghaedi N et al. / IJPR (2019), 19 (1): 231-250128: 1358–63.
(41) Tabatabai NM, Sharma M, Blumenthal SS andPetering DH. Enhanced expressions of sodium–glucose cotransporters in the kidneys of diabeticZucker rats. Diabetes Res. Clin. Pract. (2009) 83:e27-e30.
(42) Philpott D, Butzner J and Meddings J. Regulationof intestinal glucose transport. Can. J. Physiol.Pharmacol. (1992) 70: 1201-7.
(43) Peng BJ, Qi Z, Zhong YL, Xu S and Wang Z.Chlorogenic acid maintains glucose homeostasisthrough modulating the expression of SGLT-1,GLUT-2, and PLG in different intestinalsegmentsof Sprague-Dawley rats fed a high-fat diet. Biomed.Environ. Sci. (2015) 28: 894-903.
(44) Farrell TL, Ellam SL, Forrelli T and Williamson G.Attenuation of glucose transport across Caco‐2 cellmonolayers by a polyphenol‐rich herbal extract:Interactions with SGLT1 and GLUT2 transporters.Biofactors (2013) 39: 448-56.
(45) Kwon O, Eck P, Chen S, Corpe CP, Lee JH, KruhlakM and Levine M. Inhibition of the intestinalglucose transporter GLUT2 by flavonoids. FASEBJ. (2007) 21: 366-77.
(46) Kazeem MI, Oyedapo BF, Raimi OG and Adu OB.Evaluation of Ficus exasperata Vahl. leaf extractsin the management of diabetes mellitus in-vitro. J.Med. Sci. (2013) 13: 269-75.
(47) Tadera K, Minami Y, Takamatsu K and MatsuokaT. Inhibition of α-glucosidase and α-amylase byflavonoids. J. Nutr. Sci. Vitaminol. (2006) 52: 149-53.
(48) Nyambe-Silavwe H, Villa-Rodriguez JA, Ifie I,Holmes M, Aydin E, Jensen JM and WilliamsonG. Inhibition of human α-amylase by dietarypolyphenols. J. Funct. Foods (2015) 19: 723-32.
(49) McCue PP and Shetty K. Inhibitory effects ofrosmarinic acid extracts on porcine pancreaticamylase in-vitro. Asia Pacific J. Clin. Nutr. (2004)13: 101-6.
(50) Komaki E, Yamaguchi S, Isafumi M, Kinoshita M,Kakehi K and Tsukada Y. Identification of anti-αamylase components from olive leaf extracts. FoodSci. Technol. Res. (2003) 9: 35-9.
(51) Brayer GD, Luo Y and Withers SG. The structureof human pancreatic α-amylase at 1.8 Å resolutionand comparisons with related enzymes. ProteinSci. (1995) 4: 1730-42.
(52) Rasouli H, Hosseini-Ghazvini SMB, Adibi Hand Khodarahmi R. Differential α-amylase/αglucosidase inhibitory activities of plantderived phenolic compounds: a virtual screeningperspective for the treatment of obesity anddiabetes. Food Funct. (2017) 8: 1942-54.
(53) Roy S, Sehgal R, Padhy B and Kumar V. Antioxidantand protective effect of latex of Calotropis proceraagainst alloxan-induced diabetes in rats. J.Ethnopharmacol. (2005) 102: 470-73.
(54) Pouraboli I, Nazari S, Sabet N, Sharififar F andJafari M. Antidiabetic, antioxidant, and antilipidperoxidative activities of Dracocephalumpolychaetum shoot extractinstreptozotocininduced diabetic rats: In-vivo and in-vitro studies.Pharma. Biol. (2016) 54: 272-78.
(55) Kono Y, Kobayashi K, Tagawa S, Adachi K, UedaA, Sawa Y and Shibata H. Antioxidant activity ofpolyphenolics in diets: rate constants of reactionsof chlorogenic acid and caffeic acid with reactivespecies of oxygen and nitrogen. Biochim. Biophys.Acta (1997) 1335: 335-42.
(56) Zang Y, Igarashi K and Li Y. Anti-diabetic effectsof luteolin and luteolin-7-O-glucoside on KK-Ay mice. Biosci. Biotechnol. Biochem. (2016) 80:1580-86.
(57) Racine P and Auffray B. Quenching of singletmolecular oxygen by Commiphora myrrha extractsand menthofuran. Fitoterapia (2005) 76: 316-23.
(58) Zhu F, Asada T, Sato A, Xu SH and ZhengW. Rosmarinic acid extract for antioxidant,antiallergic, and α-glucosidase inhibitory activities,isolated by supramolecular technique and solventextraction from Perilla leaves. J. Agric. Food.Chem. (2014) 62: 885-92