Pharmaceutical Advances and Proteomics Researches

Document Type : Review Paper

Authors

1 Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

2 Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

3 Research Institute for Gastroenterology and Liver Diseases, Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Abstract

Proteomics enables understanding the composition, structure, function and interactions of the entire protein complement of a cell, a tissue, or an organism under exactly defined conditions. Some factors such as stress or drug effects will change the protein pattern and cause the present or absence of a protein or gradual variation in abundances. Changes in the proteome provide a snapshot of the cell activities and physiological processes. Proteomics shows the observed protein changes to the causal effects and generate a complete three-dimensional map of the cell indicating their exact location. Proteomics is used in different biological fields and is applied in medicine, agriculture, food microbiology, industry, and pharmacy and drug discovery. Biomarker discovery, follow up of drug effect on the patients, and in vitro and in vivo proteomic investigation about the drug treated subjects implies close relationship between proteomics advances and application and drug discovery and development. This review overviews and summarizes the applications of proteomics especially in pharmacology and drug discovery.

Keywords

Main Subjects


1. Blackstock WP and Weir MP. Proteomics:
quantitative and physical mapping of cellular
proteins. Trends. Biotechnol. Res. (1999) 17: 121-7.
2. O’Farrell and Patrick H. High resolution twodimensional electrophoresis of proteins. JBC .
(1975) 250: 4007-21.
3. Wasinger VC, Cordwell SJ, Cerpa‐Poljak A, Yan
JX, Gooley AA, Wilkins MR, Duncan MW, Harris
R, Williams KL and Humphery‐Smith I. Progress
with gene‐product mapping of the Mollicutes:
Mycoplasma genitalium. Electrophoresis (1995) 16:
1090-4.
4. Petricoin III EF, Ardekani AM, Hitt BA, Levine
PJ, Fusaro VA, Steinberg SM, Mills GB, Simone
C, Fishman DA, Kohn EC and Liotta LA.. Use of
proteomic patterns in serum to identify ovarian
cancer. Lancet (2002) 359: 572-7.
5. okoyama S, Hirota H, Kigawa T, Yabuki T, Shirouzu
M, Terada T, Ito Y, Matsuo Y, Kuroda Y, Nishimura
Y and Kyogoku Y. Structural genomics projects in
Japan. Nat. Struct. Biol. (2000) 7: 943-945.
6. Banks RE, Dunn MJ, Hochstrasser DF, Sanchez JC,
Blackstock W, Pappin DJ and Selby PJ. Proteomics:
new perspectives, new biomedical opportunities.
Lancet (2000) 356: 1749-56.
7. Hinsby AM, Olsen JV, Bennett KL and Mann
M. Signaling initiated by overexpression of the
fibroblast growth factor receptor-1 investigated by
mass spectrometry. Mol. Cell. Proteomics. (2003) 2:
29-360.
8. Gavin AC, Bösche M, Krause R, Grandi P, Marzioch
M, Bauer A, Schultz J, Rick JM, Michon AM,
Cruciat CM and Remor M. Functional organization
of the yeast proteome by systematic analysis of
protein complexes. Nature (2002) 415: 141-7.
9. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L,
Adams SL, Millar A, Taylor P, Bennett K, Boutilier
and K Yang L. Systematic identification of protein
complexes in Saccharomyces cerevisiae by mass
spectrometry. Nature (2002) 415: 180-3.
10. Kussmann M. Proteomics: A Biomarker Discovery
Platform to Document Health Benefits of Functional
Foods. Comp. Cont. Educ. Pract. (2006) 28: 12.
11. Hye A, Lynham S, Thambisetty M, Causevic M,
Campbell J and Byers H. Proteome-based plasma
biomarkers for Alzheimer’s disease. Brain (2006)
129: 3042-3050.
12. Grebe SK and Singh R. LC-MS/MS in the clinical
laboratory–where to from here? Clin. Biochem.
Rev. (2011) 32: 5.
13. Lawson AM. The scope of mass spectrometry in
clinical chemistry. Clin. Chem. (1975) 21:803-24.
14. Cho WC. Contribution of oncoproteomics to
cancer biomarker discovery. Mol. Cancer. (2007) 6
: 25
15. Zamanian–Azodi M, Rezaei–Tavirani M,
Hasanzadeh H, Rad SR and Dalilan S. Introducing 
63
Pharmaceutical Advances and Proteomics Researches
biomarker panel in esophageal, gastric, and colon
cancers; a proteomic approach. Gastroenterol.
Hepatol. Bed.Bench. (2015) 8 : 6
16. Zamanian-Azodi M, Rezaei-Tavirani M, RahmatiRad S, Hasanzadeh H, Tavirani MR and Seyyedi.
Protein-Protein Interaction Network could reveal
the relationship between the breast and colon
cancer. Gastroenterol. Hepatol. Bed. Bench.
(2015) 8: 215.
17. Safaei A, Rezaei-Tavirani M, Sobhi S and Akbari.
Breast cancer biomarker discovery: Proteomics
and genomics approaches. Iran. J. Cancer. Prev.
(2013) 6: 45-53.
18. Addona TA, Shi X, Keshishian H, Mani D,
Burgess M and Gillette MA. A pipeline that
integrates the discovery and verification of plasma
protein biomarkers reveals candidate markers for
cardiovascular disease. Nat. Biotechnol. (2011) 29:
635.
19. Huillet C, Adrait A, Lebert D, Picard G, Trauchessec
M and Louwagie M. Accurate quantification of
cardiovascular biomarkers in serum using Protein
Standard Absolute Quantification (PSAQ™)
and selected reaction monitoring. Mol. Cell.
Proteomics. (2012) 11.
20. Faulk WP, Rose M, Meroni PL, Del Papa N, Torry
RJ and Labarrere CA. Antibodies to endothelial
cells identify myocardial damage and predict
development of coronary artery disease in patients
with transplanted hearts. Hum. Immunol. (1999)
60: 826-832.
21. Warraich RS, Dunn MJ and Yacoub MH.Subclass
specificity of autoantibodies against myosin in
patients with idiopathic dilated cardiomyopathy:
pro-inflammatory antibodies in DCM
patients. Biochem. Biophys. Res. Commun. (1999)
259: 255-261
22. Weekes J, Wheeler CH, Yan JX, Weil J,
Eschenhagen T and Scholtysik G. Bovine dilated
cardiomyopathy: proteomic analysis of an animal
model of human dilated cardiomyopathy. Appl.
Theor. Electrophor. (1999) 20: 898-906.
23. Carrette O, Demalte I, Scherl A, Yalkinoglu O,
Corthals G and Burkhard P. A panel of cerebrospinal
fluid potential biomarkers for the diagnosis of
Alzheimer’s disease. Int. J. Proteomics. (2003) 3:
1486-94.
24. Mischak H, Delles C, Vlahou A and Vanholder R.
Proteomic biomarkers in kidney disease: issues
in development and implementation. Nat. Rev.
Nephro. (2015) 11: 221.
25. Stepczynska A, Schanstra JP and Mischak H.
Implementation of CE-MS-identified proteomebased biomarker panels in drug development and
patient management. Bioanalysis (2016) 8: 439-55
26. Schanstra JP, Zürbig P, Alkhalaf A, Argiles A,
Bakker SJ, Beige J, Bilo HJ, Chatzikyrkou C,
Dakna M, Dawson J and Delles C. Diagnosis and
prediction of CKD progression by assessment of
urinary peptides. J. Am. Soc. Nephrol. (2015) 26:
1999-2010..
27. Gopalakrishnan V, Purushothaman P and
Bhaskar A. Proteomic analysis of plasma
proteins in diabetic retinopathy patients by two
dimensional electrophoresis and MALDI-Tof-MS.
J. Diabetes. Complications. (2015) 27 : 928-36.
28. Liu Y-P, Hu S-W, Wu Z-F, Mei L-X, Lang P and
Lu X-H. Proteomic analysis of human serum from
diabetic retinopathy. Int. J. Ophthalmol. (2011) 4:
616.
29. Rauniyar N, Subramanian K, Lavallée-Adam
M, Martínez-Bartolomé S, Balch WE and Yates
JR. Quantitative proteomics of human fibroblasts
with I1061T mutation in Niemann–Pick C1
(NPC1) protein provides insights into the disease
pathogenesis. Mol. Cell. Proteomics. (2015) 14 :
1734-49.
30. Moore DF, Krokhin OV, Beavis RC, Ries M,
Robinson C and Goldin E. Proteomics of specific
treatment-related alterations in Fabry disease: a
strategy to identify biological abnormalities. Proc.
Natl. Acad. Sci. U.S.A. (2007)104: 2873-8.
31. Matafora V, Cuccurullo M, Beneduci A,
Petrazzuolo O, Simeone A and Anastasio P. Early
markers of Fabry disease revealed by proteomics.
Mol Biosyst. (2015) 11: 1543-1551.
32. Boot RG, Van Breemen MJ, Wegdam W, Sprenger
RR, De Jong S and Speijer D. Gaucher disease:
a model disorder for biomarker discovery.
Expert. Rev. Proteomics. (2009) 6: 411-9.
33. Bennett MJ. Newborn screening for metabolic
diseases: saving children’s lives and improving
outcomes. Clin. Biochem. (2014) 47: 693-4.
34. Aass C, Norheim I, Eriksen E, Børnick E, Thorsby
P and Pepaj M. Comparative proteomic analysis
of tear fluid in Graves’ disease with and without
orbitopathy. Clin. Endocrinol. (2016) 85: 805-12.
35. Engelmann B, Bischof J, Dirk A-L, Friedrich N,
Hammer E and Thiele T. Effect of experimental
thyrotoxicosis onto blood coagulation: a proteomics
study. Eur. Thyroid. J. (2015) 1: 119-24.
36. Antonelli G, Ceccato F, Artusi C, Marinova M and
Plebani. Salivary cortisol and cortisone by LC–MS/
MS: validation, reference intervals and diagnostic 
64
KhalKhal E et al. / IJPR (2019), 18 (Special Issue): 51-67
accuracy in Cushing’s syndrome. Clin. Chim. Acta.
(2015) 451:247-51.
37. Chiang AC and Massagué J. Molecular basis of
metastasis. New. Engl. J. Med. (2008) 359: 2814-
23.
38. Wenzel M and Bandow. Proteomic signatures in
antibiotic research. Proteomics (2011)11: 3256-
3268.
39. Afroz A, Zahur M, Zeeshan N and Komatsu. Plantbacterium interactions analyzed by proteomics.
Front. Plant. Sci. (2013) 4: 21
40. Takahashi D, Li B, Nakayama T, Kawamura Y and
Uemura. Plant plasma membrane proteomics for
improving cold tolerance. Front. Plant. Sci. (2013)
4: 90.
41. Wang X, Liu Y and Yang. Proteomic studies of
the abiotic stresses response in model moss–
Physcomitrella patens. Front. Plant. Sci. (2012) 3:
258..
42. Salavati A, Shafeinia A, Klubicova K, Bushehri
AAS and Komatsu. Proteomic insights into
intra-and intercellular plant-bacteria symbiotic
association during root nodule formation.
Front. Plant. Sci.( 2013) 4: 28.
43. Kun W, Xiaojue P, Yanxiao J, Yang P, Yingguo
Z and Li S. Gene, protein, and network of male
sterility in rice. Front. Plant. Sci.( 2013) 4: 92.
44. He D and Yang P. Proteomics of rice seed
germination. Front. Plant. Sci. (2013) 4: 246.
45. Piras C, Roncada P, Rodrigues PM, Bonizzi L and
Soggiu AJP. Proteomics in food: quality, safety,
microbes, and allergens. Proteomics (2016) 16:
799-815.
46. Gašo-Sokač D, Kovač S and Josić D. Application
of proteomics in food technology and food
biotechnology: process development, quality
control and product safety. Food. Technol.
Biotechnol. (2010) 48.
47. D’auria E, Agostoni C, Giovannini M, Riva E,
Zetterström R and Fortin R. Proteomic evaluation
of milk from different mammalian species as a
substitute for breast milk. Acta. Paediatr. (2005)
94: 1708-13.
48. Fong BY, Norris CS and Palmano KP. Fractionation
of bovine whey proteins and characterisation by
proteomic techniques. Int. Dairy. J. (2008) 18: 23-
46.
49. Palmer DJ, Kelly VC, Smit AM, Kuy S, Knight CG
and Cooper. Human colostrum: identification of
minor proteins in the aqueous phase by proteomics.
Proteomics (2006) 6: 2208-16.
50. Smolenski G, Haines S, Kwan FY-S, Bond J, Farr
V and Davis SR. Characterisation of host defence
proteins in milk using a proteomic approach.
J. Proteome. Res. (2007) 6: 207-15.
51. Wedholm A. Variation in milk protein composition
and its importance for the quality of cheese milk.
J. Proteome. Res. (2008).
52. Bjarnadóttir SaGn, Hollung K, Færgestad EM and
Veiseth-Kent E. chemistry f. Proteome changes
in bovine longissimus thoracis muscle during the
first 48 h postmortem: shifts in energy status and
myofibrillar stability. J. Proteome. Res. (2007) 6:
2720-31.
53. Laville E, Sayd T, Terlouw C, Chambon C, Damon
M and Larzul C. Comparison of sarcoplasmic
proteomes between two groups of pig muscles
selected for shear force of cooked meat. J. Agr.
Food Chem. (2007) 55: 5834-41.
54. Hwang I, Park B, Kim J, Cho S and Lee J.
Assessment of postmortem proteolysis by gelbased proteome analysis and its relationship
to meat quality traits in pig longissimus. Meat
Science (2005) 69: 79-91.
55. Shibata M, Matsumoto K, Oe M, OhnishiKameyama M, Ojima K and Nakajima I.
Differential expression of the skeletal muscle
proteome in grazed cattle. J. Animal Sci. (2009) 87:
2700-2708..
56. Zapata I, Zerby HN and Wick MJ. Functional
proteomic analysis predicts beef tenderness and
the tenderness differential. J. Agric. Food. Chem.
(2009) 57: 4956-63.
57. Martinez I and Jakobsen Friis. Application of
proteome analysis to seafood authentication.
Proteomics (2004) 4: 347-54.
58. Gebriel M, Uleberg K-E, Larssen E, Hjelle
Bjørnstad A, Sivertsvik M and Møller SG. Cod
(Gadus morhua) muscle proteome cataloging
using 1D-PAGE protein separation, nano-liquid
chromatography peptide fractionation, and linear
trap quadrupole (LTQ) mass spectrometry. J.
Agric. Food. Chem (2010) 58: 12307-12312.
59. Addis MF, Cappuccinelli R, Tedde V, Pagnozzi D,
Porcu MC and Bonaglini E. Proteomic analysis
of muscle tissue from gilthead sea bream (Sparus
aurata, L.) farmed in offshore floating cages.
Aquaculture (2010) 309: 245-252.
60. Agrawal GK and Rakwal R. Rice proteomics:
a cornerstone for cereal food crop proteomes.
Mass. Spectrom. Rev. (2006) 25: 1-53.
61. Akagawa M, Handoyo T, Ishii T, Kumazawa S,
Morita N and Suyama KJ. Proteomic analysis of
wheat flour allergens. J. Agric. Food. Chem (2007) 
65
Pharmaceutical Advances and Proteomics Researches
55: 6863-70.
62. Ferrari F, Fumagalli M, Profumo A, Viglio S,
Sala A and Dolcini L. Deciphering the proteomic
profile of rice (Oryza sativa) bran: A pilot study.
Electrophoresis (2009) 30: 4083-94.
63. Kim YJ, Choi SH, Park BS, Song J, Kim M and
Koh H. Proteomic analysis of the rice seed for
quality improvement. Plant. Breed. (2009) 128:
541-50.
64. Xue K, Liu B, Yang J and Xue D. The integrated
risk assessment of transgenic rice: a comparative
proteomics approach. Electron. J. Environ. Agr.
Food. Chem. (2010) 9.
65. Ricroch AE, Bergé JB and Kuntz M Evaluation of
genetically engineered crops using transcriptomic,
proteomic, and metabolomic profiling techniques.
Plant. physiol. (2011) 155: 1752-61.
66. Islam N, Tsujimoto H and Hirano H. Proteome
analysis of diploid, tetraploid and hexaploid wheat:
towards understanding genome interaction in
protein expression. Proteomics (2003) 3: 549-57.
67. Wilkins MR, Williams KL, Appel RD and
Hochstrasser DF. Proteome research: new frontiers
in functional genomics: Springer Science &
Business Media (2013).
68. Collins FS and McKusick VA. Implications of the
Human Genome Project for medical science. Jama.
(2001) 285: 540-4.
69. Kellner R. Proteomics. Concepts and perspectives.
Fresenius. J. Anal. Chem. (2000) 366: 517-24.
70. Stefan W and Ilag LL. Functional proteomics in
drug discovery. Drug. Discov. (2003): 17.
71. Anderson NL and Anderson NG. Proteome and
proteomics: new technologies, new concepts, and
new words. Electrophoresis (1998) 19: 1853-61.
72. Ilag LL, Ng JH, Beste G and Henning SW.
Emerging high-throughput drug target validation
technologies. Drug. Discov. Today (2002) 7:
S136-S42.
73. Jeffery CJ. Moonlighting proteins—an update.
Molecular BioSystems (2009) 5: 345-350.
74. Drews J. Drug discovery: a historical perspective.
Science (2000) 287: 1960-1964.
75. Crul M, Van Waardenburg R, Beijnen J and
Schellens. DNA-based drug interactions of
cisplatin. Cancer. Treat. Rev. (2002) 28: 291-303.
76. Jabs DA and Griffiths PD. Fomivirsen for the
treatment of cytomegalovirus retinitis. Am. J.
Ophthalmol. (2002) 133: 552-6.
77. Yokota H. Applications of proteomics in pharmaceutical research and development. Biochim.
Biophys. Acta. Proteins. Proteom. (2019) 1867: 17-
21.
78. Savino R, Paduano S, Preianò M and Terracciano
R. The proteomics big challenge for biomarkers
and new drug-targets discovery. Int. J. Mol. Sci.
(2012) 13: 13926-13948.
79. Savino R and Terracciano R. Mesopore-assisted
profiling strategies in clinical proteomics for drug/
target discovery. Drug. Discov. Today (2012) 17:
143-52.
80. Angel TE, Aryal UK, Hengel SM, Baker ES,
Kelly RT and Robinson EW. Mass spectrometrybased proteomics: existing capabilities and future
directions. Chem. Soc. Rev. (2012) 41: 3912-28.
81. Beretta L. Proteomics from the clinical perspective:
many hopes and much debate. Nat. Methods.
(2007) 4: 785-6.
82. Terstappen GC, Schlüpen C, Raggiaschi R and
Gaviraghi. Target deconvolution strategies in drug
discovery. Nat. Rev. Drug. Discov. (2007) 6: 891-
903.
83. Schirle M, Bantscheff M and Kuster. Mass
spectrometry-based proteomics in preclinical drug
discovery. Chem. Biol. 19.1 (2012):72-84.
84. Paunovic AI, Drowley L, Nordqvist A, Ericson E,
Mouchet E and Jonebring A. Phenotypic screen
for cardiac regeneration identifies molecules with
differential activity in human epicardium-derived
cells versus cardiac fibroblasts. ACS. Chem. Biol.
(2017) 12: 132-141.
85. Thorne N, Malik N, Shah S, Zhao J, Class B
and Aguisanda F. High‐throughput phenotypic
screening of human astrocytes to identify
compounds that protect against oxidative stress.
Stem. Cells. Transl. Med. (2016) 5: 613-27.
86. Grozinger CM, Chao ED, Blackwell HE, Moazed
D and Schreiber SL. Identification of a class of
small molecule inhibitors of the sirtuin family
of NAD-dependent deacetylases by phenotypic
screening. J. Biol. Chem. (2001) 276: 38837-43.
87. Li H, Xie W, Gore ER, Montoute MN, Bee WT
and Zappacosta F.Development of phenotypic
screening assays for γ-globin induction using
primary human bone marrow day 7 erythroid
progenitor cells. J. Biomol. Screen. (2013)18:
1212-22.
88. Xie W, Pariollaud M, Wixted WE, Chitnis N,
Fornwald J and Truong M. Identification and
characterization of PERK activators by phenotypic
screening and their effects on NRF2 activation.
PloS. One (2015) 10.
89. Cong F, Cheung AK and Huang. Chemical
genetics–based target identification in drug 
66
KhalKhal E et al. / IJPR (2019), 18 (Special Issue): 51-67
discovery. Annu. Rev. Pharmacol. Toxicol. (2012)
52: 57-78.
90. Rix U and Superti-Furga. Target profiling of small
molecules by chemical proteomics. Nat. Chem.
Biol. (2009) 5:616.
91. Brown EJ, Albers MW, Shin TB, Keith CT, Lane
WS and Schreiber. A mammalian protein targeted
by G1-arresting rapamycin–receptor complex.
Nature (1994) 369:756.
92. Sargent DJ, Conley BA, Allegra C and Collette
L. Clinical trial designs for predictive marker
validation in cancer treatment trials. J. Clin. Oncol.
(2005) 23:2020-7.
93. Lee J-m, Han JJ, Altwerger G and Kohn EC.
Proteomics and biomarkers in clinical trials
for drug development. J. Proteonomics (2011)
74:2632-41.
94. Amiri-Dashatan N, Koushki M, Abbaszadeh
H-A, Rostami-Nejad M and Rezaei-Tavirani M.
Proteomics Applications in Health: Biomarker and
Drug Discovery and Food Industry. Iran. J. Pharm.
Res. (2018) 17:1523.
95. Atkinson Jr AJ, Colburn WA, DeGruttola VG,
DeMets DL, Downing GJ, Hoth DF, Oates JA,
Peck CC, Schooley RT and Spilker BA. Biomarkers
and surrogate endpoints: preferred definitions
and conceptual framework. Clin. Pharmacol.
Therapeut. (2001) 69: 89-95.
96. Mischak H, Allmaier G, Apweiler R, Attwood T,
Baumann M and Benigni A. Recommendations
for biomarker identification and qualification in
clinical proteomics. Sci. Transl. Med. (2010) 2:
46ps42-46ps42.
97. Mahboubi M, Azodi MZ, Tavirani MR, Mansouri
V, Ahmadi NA and Hamdieh M. Protein-Protein
Interaction Analysis of Common Top Genes in
Obsessive-Compulsive Disorder (OCD) and
Schizophrenia: Towards New Drug Approach
Obsessive-Compulsive disorder (OCD) and
Schizophrenia Comorbidity Gene Analysis. Iran.
J. Pharm. Res. (2018) 17: 173.
98. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn
HK and Sawka CA. Triple-negative breast cancer:
clinical features and patterns of recurrence. Clin.
Canc. Res. (2007) 13: 4429-34.
99. Allingham-Hawkins D, Lea A and Levine. ERCC1
expression analysis to guide therapy in non-small
cell lung cancer. PLoS Curr. (2010) 2.
100. Olaussen KA, Mountzios G and Soria JC. ERCC1
as a risk stratifier in platinum-based chemotherapy
for nonsmall-cell lung cancer. Curr. Opin. Pulm.
Med. (2007) 13: 284-9.
101. Hammaker D and Firestein GS. Go upstream,
young man: lessons learned from the p38 saga.
Ann. Rheum. Dis. (2010) 69: i77-i82.
102. Amacher DE. The discovery and development
of proteomic safety biomarkers for the detection
of drug-induced liver to xicity. Toxicol. Appl.
Pharmacol. (2010) 245: 134-42.
103. Yamanaka H, Yakabe Y, Saito K, Sekijima M and
Shirai T. Quantitative proteomic analysis of rat
liver for carcinogenicity prediction in a 28‐day
repeated dose study. Proteomics (2007) 7: 781-95.
104. Zhang J, Yang PL and Gray NS. Targeting cancer
with small molecule kinase inhibitors. Nat.
Rev. Cancer. (2009) 9: 28-39.
105. Ghoreschi, Kamran, Arian Laurence and John J.
O’shea.. Selectivity and therapeutic inhibition of
kinases: to be or not to be? Nat. Immunol. (2009)
10: 356-60.
106. Panek RL, Lu GH, Klutchko SR, Batley BL,
Dahring TK, Hamby JM, Hallak H, Doherty
AM and Keiser JA. In vitro pharmacological
characterization of PD 166285, a new nanomolar
potent and broadly active protein tyrosine kinase
inhibitor. J. Pharmacol. Exp. Therapeut. (1997)
283: 1433-44.
107. Cohen S, Braiman A, Shubinsky G and Isakov N.
Protein kinase C-theta in platelet activation. FEBS
Lett. (2011)585: 3208-315
108. Coultrap SJ, Sun H, Tenner TE and Machu
TK.Therapeutics E. Competitive antagonism of
the mouse 5-hydroxytryptamine3 receptor by
bisindolylmaleimide I, a “selective” protein kinase
C inhibitor. J. Pharmacol. Exp. Therapeut. (1999)
290:76-82.
109. Lingameneni R, Vysotskaya TN, Duch DS and
Hemmings HC. Inhibition of voltage‐dependent
sodium channels by Ro 31‐8220, a ‘specific’protein
kinase C inhibitor. FEBS Lett. (2000) 473: 265-8.
110. Brehmer D, Godl K, Zech B, Wissing J and Daub
H. Proteome-wide identification of cellular targets
affected by bisindolylmaleimide-type protein
kinase C inhibitors. Mol. Cell. Proteomics (2004)
3: 490-500.
111. Godl K, Gruss OJ, Eickhoff J, Wissing J, Blencke
S and Weber M. Proteomic characterization of the
angiogenesis inhibitor SU6668 reveals multiple
impacts on cellular kinase signaling. Canc. Res.
(2005) 65: 6919-26.
112. Rix LR, Rix U, Colinge J, Hantschel O, Bennett
K and Stranzl T. Global target profile of the kinase
inhibitor bosutinib in primary chronic myeloid
leukemia cells. Leukemia (2009) 23: 477-85.
67
Pharmaceutical Advances and Proteomics Researches
113. Bergers G, Song S, Meyer-Morse N, Bergsland E
and Hanahan D. Benefits of targeting both pericytes
and endothelial cells in the tumor vasculature with
kinase inhibitors. J. Clin. Investig. (2003) 111:
1287-95.
114. Ciardiello F, Caputo R, Bianco R, Damiano V,
Fontanini G and Cuccato S. Inhibition of growth
factor production and angiogenesis in human
cancer cells by ZD1839 (Iressa), a selective
epidermal growth factor receptor tyrosine kinase
inhibitor. Clin. Canc. Res. (2001) 7: 1459-1465.
115. Laird AD, Vajkoczy P, Shawver LK, Thurnher A,
Liang C and Mohammadi M. SU6668 is a potent
antiangiogenic and antitumor agent that induces
regression of established tumors. Canc. Res.
(2000) 60: 4152-60.
116. ohnson JD, Edman JC and Rutter WJ. A receptor
tyrosine kinase found in breast carcinoma cells
has an extracellular discoidin I-like domain. Proc.
Natl. Acad. Sci. U. S. A (1993) 90: 5677-81.
117. Carter TA, Wodicka LM, Shah NP, Velasco AM,
Fabian MA and Treiber DK. Inhibition of drugresistant mutants of ABL, KIT, and EGF receptor
kinases. Proc. Natl. Acad. Sci. U. S. A (2005)102:
11011-6.
118. Fabian MA, Biggs III WH, Treiber DK, Atteridge
CE, Azimioara MD and Benedetti MG. A small
molecule–kinase interaction map for clinical
kinase inhibitors. Nat. Biotechnol. (2005) 23: 329-
36.
119. Hantschel O, Rix U, Schmidt U, Bürckstümmer
T, Kneidinger M and Schütze G. The Btk tyrosine
kinase is a major target of the Bcr-Abl inhibitor
dasatinib. Proc. Natl. Acad. Sci. U. S. A (2007) 104:
13283-8.
120. Dewar AL, Cambareri AC, Zannettino AC, Miller
BL, Doherty KV and Hughes TP. Macrophage
colony-stimulating factor receptor c-fms is a novel
target of imatinib. Blood (2005) 105: 3127-32