(1) Rojas K and Stuckey A. Breast cancer epidemiologyand risk factors. Clin. Obstet. Gynecol. (2016) 59:651-72.
(2) Di Wu MS, Xue HY and Wong HL. Nanomedicineapplications in the treatment of breast cancer:current state of the art. Int. J. Nanomedicine (2017)12: 5879-92.
(3) Contreras-Ortiz JM, Vázquez-Chagoyán JC, MartínezCastañeda JS, Estrada-Franco JG, Aparicio-BurgosJE, Acosta-Dibarrat J and Barbabosa-Pliego A.Resistance of cervical adenocarcinoma cells (HeLa)to venom from the scorpion Centruroides limpidus limpidus. J. Venom. Anim. Toxins Incl. Trop. Dis. (2013) 19: 20.
(4) Ebrahim K, Vatanpour H, Zare A, Shirazi FH and Nakhjavani M. Anticancer activity a of caspian cobra (Naja Naja Oxiana) snake venom in human cancer cell lines via induction of apoptosis. Iran. J. Pharm. Res. (2016) 15(Suppl): 101-12.
(5) Benjamin CW, Hiebsch RR and Jones DA. Caspase activation in MCF7 cells responding to etoposide treatment. Mol. Pharmacol. (1998) 53: 446-50.
(6) Leszczyniecka M, Roberts T, Dent P, Grant S and Fisher PB. Differentiation therapy of human cancer: basic science and clinical applications. Pharmacol. Ther. (2001) 90: 105-56.
(7) Johari B and Zargan J. Simultaneous targeted inhibition of Sox2‐Oct4 transcription factors using decoy oligodeoxynucleotides to repress stemness properties in mouse embryonic stem cells. Cell Biol. Int. (2017) 41: 1335-44.
(8) Mishra PJ and Merlino G. MicroRNA reexpression as differentiation therapy in cancer. J. Clin. Invest. (2009) 119: 2119-23.
(9) Zlotkin E, Rathmayer W and Lissitzky S. Chemistry, Specificity and Action of Arthropod Toxic Proteins Derived from Scorpion Venoms. In: Shankland DL, Hollingworth R and Smyth T. (eds) Pesticide and Venom Neurotoxicity. Springer, Boston, MA (1978) 227-46.
(10) Borges A, Silva S, den Camp HJO, Velasco E, Alvarez M, Alfonzo MJ, Jorquera A, De Sousa L and Delgado O. In-vitro leishmanicidal activity of Tityus discrepans scorpion venom. Parasitol. Res.
(2006) 99: 167-73.(11) Possani LD, Merino E, Corona M, Bolivar F and Becerril B. Peptides and genes coding for scorpion toxins that affect ion-channels. Biochimie (2000) 82: 861-8.202 Hottentotta Schach Crude Venom as Anticancer Drug
(12) Nakhjavani M, Vatanpour H, Abootorabi A, Shahriari F, Mohamadzadehasl B, Bovand T and Vatanpour S. In-vivo effect of lidocaine on mouse exposed to Odontobuthos Doriae scorpion venom. Int. J. Med. Res Health Sci. (2016) 5: 368-75.
(13) Habibi G, Bozorgi S, Esmaeil-Nia K, Najjar E and Mohammadipour A. Detection and discrimination of Theileria annulata and Theileria lestoquardi by using a single PCR. Arch. Razi Inst. (2008) 63: 47-52.
(14) Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. (1976) 72: 248-54.
(15) Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods (1983) 65: 55-63.
(16) Repetto G, Del Peso A and Zurita JL. Neutral red uptake assay for the estimation of cell viability/ cytotoxicity. Nat. Protoc. (2008) 3: 1125-31.
(17) Zargan J, Sajad M, Umar S, Naime M, Ali S and Khan HA. Scorpion (Androctonus crassicauda) venom limits growth of transformed cells (SHSY5Y and MCF-7) by cytotoxicity and cell cycle arrest. Exp. Mol. Pathol. (2011) 91: 447-54.
(18) Sedlak J and Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. (1968) 25: 192-205.
(19) Sinha AK. Colorimetric assay of catalase. Anal. Biochem. (1972) 47: 389-94.
(20) Zimmermann KC, Bonzon C and Green DR. The machinery of programmed cell death. Pharmacol. Therapeut. (2001) 92: 57-70.
(21) Zargan J, Sajad M, Umar S, Naime M, Ali S and Khan HA. Scorpion (Odontobuthus doriae) venom induces apoptosis and inhibits DNA synthesis in human neuroblastoma cells. Mol. Cell. Biochem. (2011) 348: 173-81.
(22) Gupta SD, Gomes A, Debnath A, Saha A and GomesA. Apoptosis induction in human leukemic cells by a novel protein Bengalin, isolated from Indian
black scorpion venom: through mitochondrial pathway and inhibition of heat shock proteins. Chem. Biol Interact. (2010) 183: 293-303.
(23) Lala PK and Orucevic A. Role of nitric oxide in tumor progression: lessons from experimental tumors. Cancer Metastasis Rev. (1998) 17: 91-106.
(24) Zargan J, Umar S, Sajad M, Naime M, Ali S and Khan HA. Scorpion venom (Odontobuthus
doriae) induces apoptosis by depolarization of mitochondria and reduces S-phase population in human breast cancer cells (MCF-7). Toxicol. InVitro (2011) 25: 1748-56.
(25) Fukumura D, Kashiwagi S and Jain RK. The role of nitric oxide in tumour progression. Nat. Rev. Cancer (2006) 6: 521-34.
(26) Brüne B, von Knethen A and Sandau KB. Nitric oxide (NO): an effector of apoptosis. Cell Death Differ. (1999) 6: 969-75.
(27) Oberley T and Oberley L. Antioxidant enzyme levels in cancer. Histol. Histopathol. (1997) 12: 525-35.
(28) Nishikawa M, Hashida M and Takakura Y. Catalase delivery for inhibiting ROS-mediated tissue injury and tumor metastasis. Adv. Drug Deliv. Rev. (2009)61: 319-26.
(29) Khan MA, Tania M, Zhang DZ and Chen HC. Antioxidant enzymes and cancer. Chin. J. CancerRes. (2010) 22: 87-92.
(30) Nikounezhad N, Nakhjavani M and Shirazi FH.Cellular glutathione level does not predict ovariancancer cells’ resistance after initial or repeated exposure to cisplatin. J. Exp. Ther. Oncol. (2017)12: 1-7.
(31) Shalini S, Dorstyn L, Dawar S and Kumar S. Old, new and emerging functions of caspases. Cell Death Differ. (2015) 22: 526-39.
(32) Li W, Li Y, Zhao Y, Yuan J and Mao W. Inhibitioneffects of scorpion venom extracts (Buthus matensii Karsch) on the growth of human breast
cancer MCF-7 cells. Afr. J. Tradit. Complement. Altern. Med. (2014) 11: 105-10.
(33) Xiao KF, Zhou J, Wang Z, Fu WH and Lu XY. Effect of the venom of the scorpion Heterometrus liangi on the expression of P21 and caspase-3 gene in human KYSE-510 cell. Adv. Mater. Res. (2012)345: 399-404.
(34) Zargan J, Sajad M, Umar S, Naime M, Ali S and Khan HA. Scorpion (Androctonus crassicauda) venom limits growth of transformed cells (SHSY5Y and MCF-7) by cytotoxicity and cell cycle arrest. Exp. Mol. Pathol. (2011) 91: 447-54.