Effect of Standardized Fractions and Tiliroside from Leaves of Tilia americana on Depression Tests in Mice

Document Type : Research article

Authors

1 Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, 62790 Xochitepec, Morelos, México.

2 Doctorado en Ciencias Biológicas y de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Iztapalapa, San Rafael Atlixco No.186, Col. Vicentina 09340, Iztapalapa, México D.F., México.

3 Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana- Iztapalapa, San Rafael Atlixco No.186, Col. Vicentina 09340, Iztapalapa, México D.F., México.

Abstract

Depression affects more than 300 million people worldwide, represents one of the leading causes of disability worldwide. Treatment is based on the use of tricyclic antidepressant, selective serotonin reuptake inhibitors, between others; that although are clinically effective has a delayed onset activity and produce important side effects. Medicinal plants are presented as a source of study in the search for therapies, this study was aimed to assess the antidepressant effect (on forced swimming test -FST- and tail suspension test -TST-) of different fractions and tiliroside from Tilia americana.
The organic fractions (FAC1-1, FAC1-2) and aqueous fractions (FAqC2-1, FAqC2-3) were obtained by column chromatography and the HPLC analysis allowed the standardization based on the concentration (mg/g) of several compounds: FAqC2-1 with tiliroside 20, quercitrin 41.7 and quercetin glucoside 73.8; FAqC2-3 with tiliroside 2.4, quercitrin 16.6 and 7-O-luteolin glucoside 35.9; FAC1-1 caffeic acid was quantified with 7.87 ; FAC1-2 with tiliroside 24.7 and quercitrin 19.8. Each fraction was tested in ICR mice at different dose in the FST and TST, as well as in the open field test (OFT); tiliroside was isolated and tested in such assays (at 0.05, 0.1, 0.5, and 1.0 mg/kg). All fractions were active, the better was FAC1-2, and induced a dose-dependent effect on FST with an ED50= 2.59 mg/kg and Emax=175.4 sec; with a sedative effect in OFT. Tiliroside with like-antidepressant activity, showed a dose-response behavior (ED50= 0.04 mg/kg and Emax=121.42 sec for FST; ED50= 0.014 mg/kg and Emax=78.28 sec for TST).

Keywords

Main Subjects


References
World Health Organization. Depression is a common
illness and people suffering from depression need
support and treatment. Technical document. Geneva,
Switzerland (2012). Available from: URL: http://www.
who.int/mediacentre/news/notes/2012/mental_health_
day_20121009/en/. Accessed on May 16th, 2018.
World Health Organization. World health day 2017.
Depression Let’s talk. Campaign essentials. Technical
document. Geneva, Switzerland (2017). Available
from: URL: http://www.who.int/campaigns/worldhealth-day/2017/toolkit.pdf. Accessed on May 16th,
2018.
World Health Organization. Traditional medicine
strategy. Geneva, Switzerland (2013) 54: 2014-2023.
Available from: URL: http://www.who.int/medicines/
publications/traditional/trm_strategy14_23/en/
Accessed on March 16th (2018).
Berenzon S, Lara MA, Robles R and MedinaMora ME. Depresión: estado del conocimiento y la
necesidad de políticas públicas y planes de acción en
México. Instituto Nacional de Psiquiatría Ramón de
la Fuente Muñiz México. DF. México. Salud Pública
México (2013) 55: 74-80.
WHO. Practice manual for establishing and
maintaining surveillance systems for suicide attempts
(1)
(2)
(3)
(4)
(5)
Effect of Standardized Fractions and Tiliroside from Leaves
1945
and self-harm. Geneve: World Health Organization
(2016). Available from: URL: http://apps.who.int/iris/
bitstream/10665/208895/1/9789241549578_eng.pdf.
Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg
AA, Warden D, Ritz L, Norquist G, Howland RH,
Lebowitz B, McGrath PJ, Shores-Wilson K, Biggs
MM, Balasubramani GK, Fava M and STAR*D Study
Team 2006. Evaluation of outcomes with citalopram
for depression using measurement- based care in
STAR*D: implications for clinical practice. Am. J.
Psychiatry (2006) 163: 28-40.
Fajemiroye J, Silva D, Oliveira D and Costa E.
Treatment of anxiety and depression: medicinal plants
in retrospect. Fundam. Clin. Pharmacol. (2016) 30:
198-215.
Zhang Z. Therapeutic effects of herbal extracts and
constituents in animal models of psychiatric disorders.
Life Sci. (2004) 75: 1659-99.
Martínez M. Catálogo de Nombres Vulgares y
Científicos de Plantas Mexicanas. 1st ed. Fondo de
Cultura Económica, D. F, México (1969) 868-1192.
Bello-González MA, Hernández-Muñoz S, LaraChávez MBN and Salgado-Garciglia R. Plantas
útiles de la comunidad indígena de nuevo San Juan
Parangaricutiro, Michoacán, México. Polibotánica
(2015) 39: 175-215.
Martínez M and Matuda E. Flora del Estado de
México. 1st ed. Biblioteca Enciclopédica del Estado
de México. Tomos I y III. Estado de México, México
(1979) 495: 245-6.
Argueta A, Cano L and Rodarte M. Atlas de las plantas
de la medicina tradicional mexicana II. 1st ed. Instituto
Nacional Indigenista. México (1994) 175: 1337-55.
Pavón N. An endangered and potentially economic
tree of México: Tilia americana (Tiliaceae). Economic.
Botany (2000) 54:113-14.
Aguirre-Hernández E, Martínez AL, González-Trujano
E, Moreno J, Vibrans H and Soto-Hernández M.
Pharmacological evaluation of anxiolytic and sedative
effects of Tilia americana L. var. mexicana in mice, J.
Ethnopharmacol. (2007) 109: 140-45.
Aguirre-Hernández E, Rosas-Acevedo H, SotoHernández M, Martínez AL, Moreno J and GonzálezTrujano ME. Bioactivity-guided isolation of betasitosterol and some fatty acids as active compounds in
the anxiolytic and sedative effects of Tilia americana
var. mexicana. Planta Med. (2007) 73: 1148-55.
Herrera-Ruiz M, Román-Ramos R, Zamilpa A,
Tortoriello J and Jiménez-Ferrer JE. Flavonoids from
Tilia americana with anxiolytic activity in plus-maze
test. J. Ethnopharmacol. (2008) 118: 312-7.
Pérez-Ortega G, Guevara-Fefer P, Chávez M, Herrera
J, Martínez A, Martínez AL and González-Trujano ME.
Sedative and anxiolytic efficacy of Tilia americana
var. mexicana inflorescences used traditionally by
communities of State of Michoacán, Mexico. J.
Ethnopharmacol. (2008) 116: 461-68.
Cárdenas-Rodríguez N, González-Trujano ME,
Aguirre-Hernández E, Ruiz-García M, Sampieri
A, Coballase-Urrutia E and Carmona-Aparicio.
Anticonvulsant and antioxidant effects of Tillia
americana var. mexicana and flavonoids constituents
in the pentylenetetrazole induced seizures. Oxid. Med.
Cell Longev. (2014) 5: 172-7.
Ángeles-López GE, González-Trujano ME, DécigaCampos M and Ventura-Martínez R. Neuroprotective
evaluation of Tilia americana and Annona diversifolia
in the neuronal damage induced by intestinal ischemia.
Neurochem. Res. (2013) 3: 162-64.
Noguerón-Merino MC, Jiménez-Ferrer E, RománRamos R, Zamilpa A, Tortorielo J and Herrera-Ruiz M.
Interactions of a standardized flavonoid fraction from
Tilia americana var. mexicana with serotoninergic
drugs in elevated plus maze. J. Ethnopharmacol.
(2015) 164: 319-27.
Hickok LG and Anway JC. Morphological and
chemical analysis of geographical variation in Tilia L.
of Eastern North America. Brittonia (1972) 24: 2-8.
Wagner H, Bladt S and Zgainski EM. Plant Drug
Analysis. 2nd ed. Springer-Verlag, Berlin Heidelberg,
New York (1996) 163-72.
Porsolt RD, Pichon ML and Jalif M. Depression: a
new model sensitive to the antidepressant treatment.
Nature (1977) 266: 730-32.
Steru L, Chermat R, Thierry B and Simon P. The
tail suspension test: a new method for screening
antidepressant in mice. Psychopharmacology (Berl).
(1978) 85: 367-70.
Prut L and Belzung C. The open field as a paradigm to
measure the effects of drugs on anxiety-like behaviors:
a review. Eur. J. Pharmacol. (2003) 463: 3-33.
Archer J. Test for emotionality in rats and mice: a
review. Anim. Behav. (1973) 21: 205-35.
Cryan JF, Markou A and Lucki I. Assessing
antidepressant activity in rodents: recent developments
and future needs. Trends Pharmacol. Sci. (2002) 23:
238-45.
Rupniak NM. Animal models of depression:
challenges from a drug development perspective.
Behav. Pharmacol. (2003) 14: 385-90.
Cryan JF, Mombereau C and Vassout A. The tail
suspension test as a model for assessing antidepressant
activity: Review of pharmacological and genetic
studies in mice. Neurosci. Biobehav. Rev. (2005) 29:
571-625.
Bai F, Li X, Clay M, Lindstrom T and Skolnick
P. Intra- and interstrain differences in models of
“behavioral despair”. Pharmacol. Biochem. Behav.
(2001) 7: 187-92.
Guan LP and Liu BY. Antidepressant-like effects and
mechanisms of flavonoids and related analogues. Eur.
J. Med. Chem. (2016) 21: 47-57.
Park SH, Sim YP, Han PL, Lee JK and Suh HW.
Antidepressant-like Effect of Kaempferol and
Quercitrin, isolated from Opuntia ficus-indica var.
saboten. Exp. Neurobiol. (2010) 19: 30-8.
Can OD, Ismail IB, Oztürk Y, Oztürk N, PotoğluErkara I, Sagratini G, Ricciutelli M, Vittori S and
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
 Chávez-Morales Y et al. / IJPR (2019), 18 (4): 1931-1946
1946
Maggi F. New antidepressant drug candidate:
Hypericum montbretti extract. Nat. Prod. Res. (2011)
25: 1469-72.
Butterweck V, Jürgenliemk G, Nahrstedet A and
Winterhoff H. Flavonoids from Hypericum perforatum
show antidepressant activity in the forced swimming
test. Planta Med. (2000) 66: 3-6.
De la Peña JB, Kim CA, Lee HL, Yoon SY, Kim HJ,
Hong EY, Kim GH, Ryu JH, Lee YS, Kim HM and
Cheong JH. Luteolin mediates the antidepressantlike effects of Cirsium japonicum in mice, possibly
through modulation of the GABAA receptor. Arch.
Pharm. Res. (2014) 37: 263-69.
Takeda H, Tsuji M, Inazu M, Egashira T and
Matsumiya T. Rosmarinic acid and caffeic acid produce
antidepressive-like effect in the forced swimming test
in mice. Eur. J. Pharmacol. (2002) 449: 261-67.
Takeda H, Tsuji M, Yamada T, Masuya J, Matsushita
K, Tahara M, Iimori M and Matsumiya T. Caffeic
acid attenuates the decrease in cortical BDNF mRNA
expression induced by exposure to forced swimming
stress in mice. Eur. J. Pharmacol. (2006) 534: 115-21.
Castagné V, Moser P, Roux S and Porsolt RD. Rodent
models of depression: forced swim and tail suspension
behavioral despair tests in rats and mice. In: Curr.
Protoc. Neurosci. (2011) 55: 1-14.
Velagapudi R, Aderogba M and Olajide OA. Tiliroside,
a dietary glycosidic flavonoid, inhibits TRAF-6/
NF-κB/p38-mediated neuroinflammation in activated
BV2 microglia. Biochim. Biophys. Acta. (2014) 840:
3311-19.
Vissiennon C, Nieber K, Kelber O and Butterweck
K. Route of administration determines the anxiolytic
activity of flavonols kaempferol, quercetin and
myricetin, are they prodrugs? J. Nutr. Biochem. (2012)
23: 733-40.
Lin W, Wang W, Yang H, Wang D and Ling W.
Influence of Intestinal Microbiota on the Catabolism
of Flavonoids in Mice. J. Food Sci. (2016) 81:
H3026-H34