Jensen H, Hamill P and Hancock REW. Peptide
antimicrobial agents. Clin. Microbiol. Rev. (2006) 19:
491-511.
Hancock REW and Chapple DS. Peptide antibiotics.
Antimicrob. Agents Chemother. (1999) 43: 1317-23.
Sang Y and Blecha F. Antimicrobial peptides and
bacteriocins: alternatives to traditional antibiotics.
Anim. Health Res. Rev. (2008) 9: 227-35.
Yang SC, Lin CH, Sung CT and Fang JY.
Antimicrobial of bacterocins: application of foods and
pharmaceuticals. Front. Microbiol. (2014) 5: 241-7.
Snyder AB and Worobo RW. Chemical and genetic
characterization of bacteriocins: antimicrobial peptides
for food safety. J. Sci. Food Agric. (2014) 94: 28-44.
Seo MD, Won HS, Kim JH, Mishig-Ochir T and Lee BJ.
Anti-microbial peptides for therapeutic applications: a
review. Molecules (2012) 17: 12276-86.
Budic M, Rijavec M, Petkovsek Z and Zgur-Bertok D.
(1)
(2)
(3)
(4)
(5)
(6)
(7)
Synthesis of a Peptide Derivative of MicrocinJ251275
Escherichia coli bacteriocins: antimicrobial efficacy
and prevalence among isolates from patients with
bacteraemia. PLoS One (2012) 6: e28769.
Kumar Tiwari S, Sutyak Noll K, Cavera VL and
Chikindas ML. Improved antimicrobial activities of
synthetic-hybrid bacteriocins designed from enterocin
E50-52 and pediocin PA-1. Appl. Environ. Microbiol.
(2015) 81: 1661-7.
Hassan M, Kjos IF, Nes DB and Lotfipour M. Natural
antimicrobial peptides from bacteria: characteristics
and potential applications to fight against antibiotic
resistance. J. Appl. Microbiol. (2015) 113: 723-36.
Chalon MC, Bellomio A, Solbiati JO, Morero RD,
Farias RN and Vincent PA. Tyrosine9 is the key amino
acid in microcinJ25 superoxide over production.
FEMS Microbiol. Lett. (2009) 300: 90-6.
Vincent PA and Delgado MA. Farias RN and Salomon
RA. Inhibition of Salmonella enterica serovars by
microcin J25. FEMS Microbiol. Lett. (2004) 236:
103-7.
Rintoul MR, De Arcuri BF, Salomon RA, Farias RN
and Morero RD. The antibacterial action of microcin
J25: evidence for disruption of cytoplasmic membrane
energization in Salmonella Newport. FEMS Microbiol.
Lett. (2001) 204: 265-70.
Jia Pan S, Cheung WL, Fung HK, Floudas CA and
Link AJ. Computational design of the lasso peptide
antibiotic microcin J25. Protein Eng. Des. Sel. (2011)
24: 275-82.
Rebuffat S. Microcins in action: amazing defense
strategies of Enterobacteria. Biochem. Soc. Trans.
(2012) 40: 1456-62.
Dupuy F and Morero R. Microcin J25 membrane
interaction: Selectivity toward gel phase. Biochim.
Biophys. Acta. (2011) 1808: 1764-71.
Hegemann JD, Zimmermann M, Xie X and Marahiel
MA. Lasso peptides: an intriguing class of bacterial
natural products. Acc. Chem. Res. (2015) 48: 1909-19.
Adelman K, Yuzenkova, J, La Porta A, Zenkin N, Lee
J, Lis JT, Borukhov S, Wang MD and Severinov K.
Molecular mechanism of transcription inhibition by
peptide antibiotic microcin J25. Mol. Cell (2004) 14:
753-62.
Jia Pan S and James Link A. Sequence diversity in
the lasso peptide framework: discovery of functional
microcin J25 variants with multiple amino acid
substitutions. J. Am. Chem. Soc. (2011) 133: 5016-23.
Kuznedelov K, Semenova E, Knappe TA,
Mukhamedjarov D, Srivastava A, Chatterjee S, Ebright
RH, Marahiel M and Severinov K. The antibacterial
threaded-lasso peptide capistruin inhibits bacterial
RNA polymerase. J. Mol. Biol. (2011) 412: 842-8.
Pavlova O, Mukhopadhyay J, Sineva E, Ebright
RH and Severinov K. Systematic structure-activity
analysis of microcin J25. J. Biol. Chem. (2008) 283:
25589-95.
Destoumieux-Garzon D, Duquesne S, Peduzzi J,
Goulard C, Desmadril M, Letellier L, Rebuffat S and
Boulanger P. The iron–siderophore transporter FhuA
is the receptor for the antimicrobial peptide microcin
J25: role of the microcin Val11–Pro16 β-hairpin region
in the recognition mechanism. Biochem. J. (2005) 389:
869-76.
Chiuchiolo M, Delgado M, Farias R and Salomon
R. Growth-phase dependent expression of the
cyclopeptide antibiotic microcin J25. J. Bacteriol.
(2005) 183: 1755-64.
Severinov K, Semenova E, Kazakov A, Kazakov
T and Gelfand MS. Low-molecular-weight post-
translationally modified microcins. Mol. Microbiol.
(2007) 65: 1380-94.
Bellomio A, Vincent PA, Arcuri BF, Farı ́as RN and
Morero RD. Microcin J25 has dual and independent
mechanisms of action in Escherichia coli: RNA
polymerase inhibition and increased superoxide
production. J. Bacteriol. (2007) 189: 4180-6.
Soudy R, Wang L and Kaur K. Synthetic peptides
derived from the sequence of a lasso peptide microcin
J25 show antibacterial activity. Bioorg. Med. Chem.
(2012) 20: 1794-800.
Hammami R, Bedard F, Gomma A, Subirade M, Biron
E and Fliss I. Lasso-inspired peptides with distinct
antibacterial mechanisms. Amino Acids (2015) 47:
417-28.
Ferguson AL, Zhang S, Dikiy I, Panagiotopoulos AZ,
Debenedetti PG and James Link A. An experimental
and computational investigation of spontaneous lasso
formation in microcin J25. Biophys. J. (2010) 99:
3056-65.
Wilson KA, Kalkum M, Ottesen J, Yuzenkova J,
Chait BT, Landick R, Muir T, Severinov K and Darst
SA. Structure of microcin J25, a peptide inhibitor of
bacterial RNA polymerase, is a lassoed tail. J. Am .
Chem. Soc. (2003) 125: 12475-83.
Rosengren KJ, Clark RJ, Daly NL, Goransson U,
Jones A and Craik DJ. Microcin J25 has a threaded
sidechain-to-backbone ring structure and not a head-
to-tail cyclized backbone. J. Am. Chem. Soc. (2003)
125: 12464-74.
Atherton E and Sheppard R. Fluorenylmethoxycarbonyl-
polyamide solid phase peptide synthesis general
principles and development. Solid phase peptide
synthesis. A practical approach, Oxford Information
Press. (1989) 25-38.
Balouiri M, Sadiki M and KoraichiIbnsoud S. Methods
for in-vitro evaluating antimicrobial activity: a review.
J. Pharm. Anal. (2016) 6: 71-9.
Semenova E, Yuzenkova Y, Peduzzi J, Rebuffat S and
Severinov K. Structure-activity analysis of microcin
J25: distinct parts of the threaded lasso molecule
are responsible for interaction with bacterial RNA
polymerase. J. Bacteriol. (2005) 187: 3859-63.
Bellomio A, Vincent PA, de Arcuri BF, Salomon RA,
Morero RD and Farias RN. The microcin J25 beta-
hairpin region is important for antibiotic uptake but
not for RNA polymerase and respiration inhibition.
Biochem. Biophys. Res. Commun. (2004) 325: 1454-8.
Mukhopadhyay J, Sineva E, Knight J, Levy RM and
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
Mazaheri Tehrania M et al. / IJPR (2019), 18 (3): 1264-12761276
Ebright RH. Antibacterial peptide microcin J25 inhibits
transcription by binding within and obstructing the
RNA polymerase secondary channel. Mol. Cell (2004)
14: 739-51.
Adelman K, Yuzenkova J, La Porta A, Zenkin N, Lee
J, Lis JT, Borukhov S, Wang MD and Severinov K.
Molecular mechanism of transcription inhibition by
peptide antibiotic Microcin J25. Mol. Cell (2004) 14:
753-62.
Miller JH. A Short Course in Bacterial Genetics. Cold
Spring Harbor Laboratory, Cold Spring Harbor, NY
(1992).
Mukhopadhyay J, Kapanidis AN, Mekler V,
Kortkhonjia E, Ebright YW and Ebright RH.
Translocation of sigma (70) with RNA polymerase
during transcription: fluorescence resonance energy
transfer assay for movement relative to DNA. Cell
(2001) 106: 453-63.
(35)
(36)
(37)
Schlageck JG, Baughman M and Yarbrough LR.
Spectroscopic techniques for study of phosphodiester
bond formation by Escherichia coli RNA polymerase.
J. Biol. Chem. (1979) 254: 12074-7.
Whitcomb DC and Lowe ME. Human pancreatic
digestive enzymes. Dig. Dis. Sci. (2007) 52: 1-17.
Gray GM and Cooper HL. Protein digestion and
absorption. Gastroenterology. (1971) 61: 535-44.
Mohamed MF, Abdelkhalek A and Seleem MN.
Evaluation of short synthetic antimicrobial peptides
for treatment of drug-resistant and intracellular
Staphylococcus aureus. Sci. Rep. (2016) 6: 29707.
Soudy R, Etayash H, Bahadorani K, Lavasanifar A and
Kaur K. Breast cancer targeting peptide binds keratin
1: a new molecular marker for targeted drug delivery
to breast cancer. Mol. Pharm. (2017) 14: 593-604.