References
Lu Y and Chen SC. Micro and nano-fabrication of
biodegradable polymers for drug delivery. Adv. Drug
Deliver. Rev. (2004) 56: 1621-33.
Koo O, Rubinstein I and Onyuksel H. Role of
nanotechnology in targeted drug delivery and imaging:
a concise review. Nanomedicine (2005) 1: 193-212.
Elzoghby AO, El-Fotoh WS and Elgindy NA. Casein
based formulations as promising controlled release
drug delivery systems. J. Control. Release (2011) 153:
206-16.
Zimet P, Rosenberg D and Livney YD. Re-assembled
casein micelles and casein nanoparticles as nanovehicles for ω-3 polyunsaturated fatty acids. Food
Hydrocoll. (2011) 25: 1270-6.
Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N,
Fathi M, Chantre P and Vandermander J. Efficacy of
a green tea extract rich in catechin polyphenols and
caffeine in increasing 24 h energy expenditure and
fat oxidation in humans. Am. J. Clin. Nutr. (1999) 70:
1040-5.
Lambert JD and Yang CS. Cancer chemopreventive
activity and bioavailability of tea and tea polyphenols.
Mutat. Res. (2003) 523-4: 201-8.
Saleem M, Adhami VM, Ahmad N, Gupta S and
Mukhtar H. Prognostic significance of metastssisassociated proteinnn S100A4 (Mts 1) in prostate
cancer progression and chemoprevention regimens
in an autochthonous mouse model. Clin. Cancer Res.
(2005) 11: 147-53.
Hirano R, Momiyama Y, Takahashi R, Taniguchi H,
Kondo K, Nakamura H and Ohsuzu F. Comparison of
green tea intake in Japanese patients with and without
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
Prakash Upputuri RT and Azad Mandal AK / IJPR (2019), 18 (3): 1137-1146
1146
angiographic coronary artery disease. Am. J. Cardiol.
(2002) 90: 1150-3.
Mandel S, Amit T, Reznichenko L, Weinreb O and
Youdim MBH. Green tea catechins as brain-permeable,
natural iron chelators-antioxidants for the treatment of
neurodegenerative disorders. Mol. Nutr. Food Res.
(2006) 50: 229-34.
Kao Y, Chang H, Lee M and Chen C. Tea, obesity and
diabetes. Mol. Nutr. Food Res. (2006) 50: 188-210.
Erba D, Riso P, Bordoni A, Foti P, Biagi PL and
Testolin G. Effectiveness of moderate green tea
consumption on antioxidant status and plasma lipid
profile in humans. J. Nutr. Biochem. (2005) 16: 144-9.
Hesse T, Jenkinson J, Love C, Milam R, Perkins L,
Adams R, McCall S and Ceremuga TE. Anxiolytic
effects of L-theanine – a component of green tea –
when combined with midazolam, in the male Sprague
– Dawley rat. AANA J. (2009) 77: 445-9.
Chen Z, Zhu QY and Tsang D. Degradation of green
tea catechins in tea drinks. J. Agric. Food Chem.
(2001) 49: 477-82.
Hong J, Lambart JD, Lee S, Sinka PJ and Yang CS.
Involvement of multidrug resistance-associated proteins
in regulating cellular levels of (-)-epigallocatechin-3-
gallate and its methyl metabolites. Biochem. Biophys.
Res. Commun. (2003) 310: 222-7.
Lu H, Meng X, Li C, Sang S, Patten C, Sheng S, Hong
J, Bai N, Winnik B, Ho CT and Yang CS. Glucuronides
of tea catechins: enzymology of biosynthesis and
biological activities. Drug Metab. Dispos. (2003) 31:
452-61.
Kaunisto E, Marucci M, Borgquist P and Axelsson A.
Mechanistic modelling of drug release from polymer
coated and swelling and dissolving polymer matrix
systems. Int. J. Pharmaceut. (2011) 418: 54-77.
Frenning G. Modelling drug release from inert matrix
systems: from moving boundaries to continuous-field
descriptions. Int. J. Pharmaceut. (2011) 418: 88-99.
Laurie ATR and Jackson RM. Q-site finder: an energybased method for the prediction of protein-ligand
binding sites. Bioinformatics (2005) 21: 1908-16.
Swain T and Hillis WE. The phenolic constituents
of Prunus domestica. l.-The quantitative analysis of
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
phenolic constituents. J. Sci. Food Agr. (1959) 10:
63-8.
Costa P and Lobo JMS. Modelling and comparison
of dissolution profiles. Eur. J. Pharm. Sci. (2001) 13:
123-33.
Williams WB, Cuvelier ME and Berset C. Use of a
free radical method to evaluate antioxidant activity.
LWT-Food Sci. Technol. (1995) 28: 25-30.
Livney YD. Milk protein as vehicles for bioactives.
Curr. Opin. Colloid Interface Sci. (2010) 15: 73-83.
Bachar M, Mandelbaum A, Portnaya I, Perlstein
H, Even-Chen S, Barenholz Y and Danino D.
Development and characterization of a novel drug
nanocarrier for oral delivery, based on self-assembled
β-casein micelles. J. Control. Release (2012) 160:
164-71.
Dube A, Nicolazzo JA and Larson I. Chitosan
nanoparticles enhance the intestinal absorption of green
tea catechins (+)-catechin and (-)-epigallocatechin
gallate. Eur. J. Pharm. Sci. (2010) 41: 219-25
Upputuri RTP, Kumar S, Kulandaivelu K and Mandal
AKA. Encapsulation efficiency and release of green
tea polyphenols from poly (lactic acid)-poly (ethylene
glycol) nanoparticles are controlled by the ratio of poly
(lactic acid)/poly (ethylene glycol). Ind. J. Pharm.
Edu. Res. (2016) 50: 301-9.
Lohcharoenkal W, Wang L, Chen YC and Rojanasakul
Y. Protein nanoparticles as drug delivery carriers for
cancer therapy. Biomed. Res. Int. (2014) 2014: 1-12.
Martinez A, Iglesias I and Lozano R. Synthesis
and characterization of thiolated alginate-albumin
nanoparticles stabilized by the disulphide bonds.
Evaluation as drug delivery systems. Carbohyd.
Polym. (2011) 83: 1311-21.
Arifin DY, Lee LY and Wang C. Mathematical
modelling and simulation of drug release from
microspheres: Implications to drug delivery systems.
Adv. Drug Deliver. Rev. (2006) 58: 1274-325.
Wise DL. Handbook of Pharmaceutical Controlled
Release Technology. Marcel Dekker AG, NY (2000)
661-93