Mitochondrial Complex I Is an Essential Player in LPS-Induced Preconditioning in Differentiated PC12 Cells

Document Type : Research article


1 Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

2 Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.


Preconditioning (PC) as a protective strategy against noxious insults can decline cell death and apoptosis. It has been approved that mitochondria play a key role in PC mechanism. The critical role of complex I (CI) in oxidative phosphorylation machinery and intracellular ROS production, particularly in the brain, accentuates its possible role in PC-induced neuroprotection. Here, differentiated PC12 cells were preconditioned with ultra-low dose LPS (ULD, 3 μg/mL) prior to exposure to high concentration of LPS (HD, 750 μg/mL). Our results showed that HD LPS treatment reduces cell viability and CI activity, and intensifies expression of cleaved caspase 3 compared to the control group. Intriguingly, PC induction resulted in enhancement of cell
viability and CI activity and reduction of caspase3 cleavage compared to HD LPS group. In order to explore the role of CI in PC, we combined the ULD LPS with rotenone, a CI inhibitor. Following rotenone administration, cell viability significantly reduced while caspase3 cleavage increased compared to PC induction group. Taken together, cell survival and reduction of apoptosis followed by PC can be at least partially attributed to the preservation of mitochondrial CI function.


Main Subjects

Beutler B. Tlr4: central component of the sole
mammalian LPS sensor.
Curr. Opin. Immunol. (2000)
12: 20-6.

Lafon M, Megret F, Lafage M and Prehaud C. The

innate immune facet of brain.
J. Mol. Neurosci. (2006)
29: 185-94.

Barajon I, Serrao G, Arnaboldi F, Opizzi E, Ripamonti

G, Balsari A and Rumio C. Toll-like receptors 3, 4,

and 7 are expressed in the enteric nervous system and

dorsal root ganglia.
J. Histochem. Cytochem . (2009)
57: 1013-23.

Li WC, Jiang R, Jiang DM, Zhu FC, Su B, Qiao B and

Qi XT. Lipopolysaccharide preconditioning attenuates

apoptotic processes and improves neuropathologic

changes after spinal cord injury in rats.
Int. J. Neurosci.
(2014) 124: 585-92.

Dirnagl U and Meisel A. Endogenous neuroprotection:

mitochondria as gateways to cerebral preconditioning?

(2008) 55: 334-44.
Vargas T, Ugalde C, Spuch C, Antequera D, Moran

MJ, Martin MA, Ferrer I, Bermejo-Pareja F and Carro






The role of mitochondrial complex I in the mechanism underlying LPS-PC neuroprotection1453
E. Abeta accumulation in choroid plexus is associated

with mitochondrial-induced apoptosis.
. (2010) 31: 1569-81.
Correia SC, Santos RX, Perry G, Zhu X, Moreira

PI and Smith MA. Mitochondria: the missing link

between preconditioning and neuroprotection.
Alzheimers Dis
. (2010) 20: S475-S85.
Weise J, Engelhorn T, Dörfler A, Aker S, Bähr M

and Hufnagel A. Expression time course and spatial

distribution of activated caspase-3 after experimental

status epilepticus: contribution of delayed neuronal cell

death to seizure-induced neuronal injury.
. (2005) 18: 582-90.
Moreira PI, Santos MS, Moreno A, Rego AC and

Oliveira C. Effect of amyloid β‐peptide on permeability

transition pore: A comparative study
. J. Neurosci. Res.
(2002) 69: 257-67.

Lunnon K, Keohane A, Pidsley R, Newhouse S,

Riddoch-Contreras J, Thubron EB, Devall M, Soininen

H, Kłoszewska I and Mecocci P. Mitochondrial genes

are altered in blood early in Alzheimer′s disease.

Neurobiol. Aging.
(2017) 53: 36-47.
Xie H, Guan J, Borrelli LA, Xu J, Serrano-Pozo A and

Bacskai BJ. Mitochondrial alterations near amyloid

plaques in an Alzheimer′s disease mouse model.
. (2013) 33: 17042-51.
Song DD, Shults CW, Sisk A, Rockenstein E and

Masliah E. Enhanced substantia nigra mitochondrial

pathology in human α-synuclein transgenic mice after

treatment with MPTP1.
Exp. Neurol. (2004) 186:

Amo T, Saiki S, Sawayama T, Sato S and Hattori N.

Detailed analysis of mitochondrial respiratory chain

defects caused by loss of PINK1.
Neurosci. Lett.
(2014) 580: 37-40.

Mullin S and Schapira A. α-Synuclein and

dysfunction in Parkinson’s disease. Mol.
(2013) 47: 587-97.
Carmo C, Naia L, Lopes C and Rego AC. Mitochondrial

dysfunction in Huntington’s disease.
Adv. Exp. Med.
. (2018) 1049: 59-83.
Damiano M, Galvan L, Déglon N and Brouillet E.

Mitochondria in Huntington′s disease.
BBA-Mol Basis
(2010) 1802: 52-61.
Golpich M, Amini E, Mohamed Z, Azman Ali R,

Mohamed Ibrahim N and Ahmadiani A. Mitochondrial

dysfunction and biogenesis in neurodegenerative

diseases: pathogenesis and treatment.
CNS Neurosci.
. (2017) 23: 5-22.
Brealey D and Singer M. Mitochondrial dysfunction in

Curr. Infect. Dis. Rep. (2003) 5: 365-71.
Singer M. Mitochondrial function in sepsis: acute

phase versus multiple organ failure.
Crit. Care Med.
(2007) 35: S441-S8.

Noh H, Jeon J and Seo H. Systemic injection of

LPS induces region-specific neuroinflammation and

mitochondrial dysfunction in normal mouse brain.

Neurochem. Int.
(2014) 69: 35-40.
Galley HF. Oxidative stress and mitochondrial
















dysfunction in sepsis.
Br. J. Anaesth . (2011) 107:

Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger

W, Brohi K, Itagaki K and Hauser CJ. Circulating

mitochondrial DAMPs cause inflammatory responses

to injury.
Nature (2010) 464: 104.
Chang AL, Ulrich A, Suliman HB and Piantadosi CA.

Redox regulation of mitophagy in the lung during

murine Staphylococcus aureus sepsis.
Free Radic.
Biol. Med.
(2015) 78: 179-89.
Widdrington JD, Gomez-Duran A, Pyle A, Ruchaud-

Sparagano MH, Scott J, Baudouin SV, Rostron AJ,

Lovat PE, Chinnery PF and Simpson AJ. Exposure

of monocytic cells to lipopolysaccharide induces

coordinated endotoxin tolerance, mitochondrial

biogenesis, mitophagy, and antioxidant defenses.

Front. Immunol
. (2018) 9: 2217.
Dudkina NV, Sunderhaus S, Boekema EJ and

Braun HP. The higher level of organization of the

oxidative phosphorylation system: mitochondrial

J. Bioenerg. Biomembr . (2008) 40:

Zickermann V, Kerscher S, Zwicker K, Tocilescu

MA, Radermacher M and Brandt U. Architecture of

complex I and its implications for electron transfer and

proton pumping.
Biochim. Biophys. Acta Bioenerg.
(2009) 1787: 574-83.

Folbergrová J, Ješina P, Drahota Z, Lisý V, Haugvicová

R, Vojtíšková A and Houštěk J. Mitochondrial

complex I inhibition in cerebral cortex of immature

rats following homocysteic acid-induced seizures.

Exp. Neurol.
(2007) 204: 597-609.
Panov A, Dikalov S, Shalbueva N, Taylor G, Sherer T

and Greenamyre JT. Rotenone model of Parkinson′s

disease: Multiple brain mitochondria dysfunctions

after short-term systemic rotenone intoxication.
J. Biol. Chem.
(2005) 280: 42026-35.
Zhou L, Wang W, Hoppel C, Liu J and Zhu X.

Parkinson′s disease-associated pathogenic VPS35

mutation causes complex I deficits.
BBA-Mol Basis
Dis. (
2017) 1863: 2791-5.
Orth M and Schapira A. Mitochondria and degenerative

. Am. J. Med. Genet. A (2001) 106: 27-36.
López-Armada MJ, Riveiro-Naveira RR, Vaamonde-

García C and Valcárcel-Ares MN. Mitochondrial

dysfunction and the inflammatory response.

(2013) 13: 106-18.
Piantadosi CA and Suliman HB. Redox regulation

of mitochondrial biogenesis.
Free Radic. Biol. Med.
(2012) 53: 2043-53.

Shaerzadeh F, Ahmadiani A, Esmaeili MA, Ansari N,

Asadi S, Tusi SK, Sonboli A, Ghahremanzamaneh

M and Khodagholi F. Antioxidant and antiglycating

activities of Salvia sahendica and its protective effect

against oxidative stress in neuron-like PC12 cells.
Nat. Med.
(2011) 65: 455.
Uyemura SA, Luo S, Vieira M, Moreno SN and

Docampo R. Oxidative phosphorylation and

rotenone-insensitive malate-and NADH-quinone













Manouchehri N et al. / IJPR (2019), 18 (3): 1445-14551454
oxidoreductases in Plasmodium yoelii yoelii

mitochondria in situ.
J. Biol. Chem. (2004) 279: 385-

Mosmann T. Rapid colorimetric assay for cellular

growth and survival: application to proliferation and

cytotoxicity assays.
J. Immunol. Methods (1983) 65:

Bradford MM. A rapid and sensitive method for

the quantitation of microgram quantities of protein

utilizing the principle of protein-dye binding
. Anal.
. (1976) 72: 248-54.
Zhu L, Zuo W, Yang H, Zhang H, Luo H, Ye D, Lin X,

Mao J, Feng J and Chen L. Involvement of volume-

activated chloride channels in H2O2 preconditioning

against oxidant-induced injury through modulating

cell volume regulation mechanisms and membrane

permeability in PC12 cells.
Mol. Neurobiol. (2013)
48: 205-16.

Mo L, Yang C, Gu M, Zheng D, Lin L, Wang X, Lan A,

Hu F and Feng J. PI3K/Akt signaling pathway-induced

heme oxygenase-1 upregulation mediates the adaptive

cytoprotection of hydrogen peroxide preconditioning

against oxidative injury in PC12 cells
. Int. J. Mol.
(2012) 30: 314-20.
Meloni BP, Tilbrook PA, Boulos S, Arthur PG and

Knuckey NW. Erythropoietin preconditioning in

neuronal cultures: signaling, protection from
ischemia, and proteomic analysis.
J. Neurosci. Res.
(2006) 83: 584-93.

Zhang Z, Ji M, Liao Y, Yang J and Gao J.

Endotoxin tolerance induced by lipopolysaccharide

preconditioning protects against surgery-induced

cognitive impairment in aging mice.
Mol. Med. Rep .
(2018) 17: 3845-52.

Turner RC, Naser ZJ, Lucke-Wold BP, Logsdon AF,

Vangilder RL, Matsumoto RR, Huber JD and Rosen CL.

Single low-dose lipopolysaccharide preconditioning:

neuroprotective against axonal injury and modulates

glial cells.
Neuroimmunol. Neuroinflamm. (2017) 4: 6.
Vartanian KB, Stevens SL, Marsh BJ, Williams-

Karnesky R, Lessov NS and Stenzel-Poore MP. LPS

preconditioning redirects TLR signaling following

stroke: TRIF-IRF3 plays a seminal role in mediating

tolerance to ischemic injury.
J. Neuroinflammation
(2011) 8: 140.

Wang Z, Zhou Y, Yu Y, He K and Cheng LM.

Lipopolysaccharide preconditioning increased the

level of regulatory B cells in the spleen after acute

ischaemia/reperfusion in mice.
Brain Res. (2018)
1701: 46-57.

Amini E, Golpich M, Farjam AS, Kamalidehghan B,

Mohamed Z, Ibrahim NM, Ahmadiani A and Raymond

AA. Brain lipopolysaccharide preconditioning-

induced gene reprogramming mediates a tolerance

state in electroconvulsive shock model of epilepsy.

Front. Pharmacol
. (2018) 9: 416.
Pan J, Cai R, Chen Y, Li Y, Lin W, Wu J and

Wang X. Analysis the effect of hyperbaric oxygen

preconditioning on neuronal apoptosis, Ca2+

concentration and caspases expression after spinal

cord injury in rats.
Eur. Rev. Med. Pharmacol. Sci.
(2018) 22: 3467-73.

Hillion JA, Takahashi K, Maric D, Ruetzler C, Barker

JL and Hallenbeck JM. Development of an ischemic

tolerance model in a PC12 cell line.
J. Cereb. Blood
Flow Metab
. (2005) 25: 154-62.
Callahan LA and Supinski GS. Downregulation of

diaphragm electron transport chain and glycolytic

enzyme gene expression in sepsis.
J. Appl. Physiol.
(2005) 99: 1120-6.

Voloboueva LA and Giffard RG. Inflammation,

mitochondria, and the inhibition of adult neurogenesis
J. Neurosci. Res.
(2011) 89: 1989-96.
Thakur P and Nehru B. Inhibition of neuroinflammation

and mitochondrial dysfunctions by carbenoxolone

in the rotenone model of Parkinson’s disease
. Mol.
. (2015) 51: 209-19.
Choi DY, Liu M, Hunter RL, Cass WA, Pandya JD,

Sullivan PG, Shin EJ, Kim HC, Gash DM and Bing G.

Striatal neuroinflammation promotes Parkinsonism in

PLoS One (2009) 4: e5482.
Lopez-Armada M, Carames B, Martin M, Cillero-

Pastor B, Lires-Dean M, Fuentes-Boquete I, Arenas J

and Blanco F. Mitochondrial activity is modulated by

TNFα and IL-1β in normal human chondrocyte cells.

Osteoarthr. Cartil
. (2006) 14: 1011-22.
Maneiro E, Lopez-Armada M, De Andres M, Carames

B, Martin M, Bonilla A, Del Hoyo P, Galdo F, Arenas

J and Blanco F. Effect of nitric oxide on mitochondrial

respiratory activity of human articular chondrocytes.

Ann. Rheum. Dis.
(2005) 64: 388-95.
Kim J, Xu M, Xo R, Mates A, Wilson G, Pearsall

IV A and Grishko V. Mitochondrial DNA damage is

involved in apoptosis caused by pro-inflammatory

cytokines in human OA chondrocytes.
(2010) 18: 424-32.
Guidarelli A, Cerioni L and Cantoni O. Inhibition of

complex III promotes loss of Ca2+ dependence for

mitochondrial superoxide formation and permeability

transition evoked by peroxynitrite.
J. Cell Sci. (2007)
120: 1908-14.

Ding Y and Li L. Lipopolysaccharide preconditioning

induces protection against lipopolysaccharide-induced

neurotoxicity in organotypic midbrain slice culture.

Neurosci. Bull.
(2008) 24: 209-18.
Rao J, Qin J, Qian X, Lu L, Wang P, Wu Z, Zhai

Y, Zhang F, Li G and Wang X. Lipopolysaccharide

preconditioning protects hepatocytes from ischemia/

reperfusion injury (IRI) through inhibiting ATF4-

CHOP pathway in mice.
PLoS One (2013) 8: e65568.
Zhang Q, Bian H, Guo L and Zhu H. Pharmacologic

preconditioning with berberine attenuating ischemia-

induced apoptosis and promoting autophagy in neuron.

Am. J. Transl. Res.
(2016) 8: 1197.
Cai M, Yang Q, Li G, Sun S, Chen Y, Tian L and Dong

H. Activation of cannabinoid receptor 1 is involved

in protection against mitochondrial dysfunction and

cerebral ischaemic tolerance induced by isoflurane
























The role of mitochondrial complex I in the mechanism underlying LPS-PC neuroprotection1455
Br. J. Anaesth. (2017) 119: 1213-23.
Dave KR, Saul I, Busto R, Ginsberg MD, Sick TJ and

Pérez-Pinzón MA. Ischemic preconditioning preserves

mitochondrial function after global cerebral ischemia

in rat hippocampus.
J. Cereb. Blood Flow Metab.
(2001) 21: 1401-10.

Zhang HX, Du GH and Zhang JT. Ischemic pre-

conditioning preserves brain mitochondrial functions

during the middle cerebral artery occlusion in rat.

Neurol. Res
. (2003) 25: 471-6.
Dave KR, Saul I, Busto R, Ginsberg MD, Sick TJ and

Perez-Pinzon MA. Ischemic preconditioning preserves

mitochondrial function after global cerebral ischemia

in rat hippocampus.
J. Cereb. Blood Flow Metab .
(2001) 21: 1401-10.




Stetler RA, Leak RK, Yin W, Zhang L, Wang S, Gao

Y and Chen J. Mitochondrial biogenesis contributes

to ischemic neuroprotection afforded by LPS pre-

J. Neurochem. (2012) 2: 125-37.
Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B,

Melendez JA and Robinson JP. Mitochondrial complex

I inhibitor rotenone induces apoptosis through

enhancing mitochondrial reactive oxygen species

J. Biol. Chem. (2003) 278: 8516-25.
Heinz S, Freyberger A, Lawrenz B, Schladt L,

Schmuck G and Ellinger-Ziegelbauer H. Mechanistic

investigations of the mitochondrial complex I inhibitor

rotenone in the context of pharmacological and safety

Sci. Rep. (2017) 7: 45465.