Beutler B. Tlr4: central component of the sole
mammalian LPS sensor. Curr. Opin. Immunol. (2000)
12: 20-6.
Lafon M, Megret F, Lafage M and Prehaud C. The
innate immune facet of brain. J. Mol. Neurosci. (2006)
29: 185-94.
Barajon I, Serrao G, Arnaboldi F, Opizzi E, Ripamonti
G, Balsari A and Rumio C. Toll-like receptors 3, 4,
and 7 are expressed in the enteric nervous system and
dorsal root ganglia. J. Histochem. Cytochem . (2009)
57: 1013-23.
Li WC, Jiang R, Jiang DM, Zhu FC, Su B, Qiao B and
Qi XT. Lipopolysaccharide preconditioning attenuates
apoptotic processes and improves neuropathologic
changes after spinal cord injury in rats. Int. J. Neurosci.
(2014) 124: 585-92.
Dirnagl U and Meisel A. Endogenous neuroprotection:
mitochondria as gateways to cerebral preconditioning?
Neuropharmacology (2008) 55: 334-44.
Vargas T, Ugalde C, Spuch C, Antequera D, Moran
MJ, Martin MA, Ferrer I, Bermejo-Pareja F and Carro
(1)
(2)
(3)
(4)
(5)
(6)
The role of mitochondrial complex I in the mechanism underlying LPS-PC neuroprotection1453
E. Abeta accumulation in choroid plexus is associated
with mitochondrial-induced apoptosis. Neurobiol.
Aging. (2010) 31: 1569-81.
Correia SC, Santos RX, Perry G, Zhu X, Moreira
PI and Smith MA. Mitochondria: the missing link
between preconditioning and neuroprotection. J.
Alzheimers Dis. (2010) 20: S475-S85.
Weise J, Engelhorn T, Dörfler A, Aker S, Bähr M
and Hufnagel A. Expression time course and spatial
distribution of activated caspase-3 after experimental
status epilepticus: contribution of delayed neuronal cell
death to seizure-induced neuronal injury. Neurobiol.
Dis. (2005) 18: 582-90.
Moreira PI, Santos MS, Moreno A, Rego AC and
Oliveira C. Effect of amyloid β‐peptide on permeability
transition pore: A comparative study. J. Neurosci. Res.
(2002) 69: 257-67.
Lunnon K, Keohane A, Pidsley R, Newhouse S,
Riddoch-Contreras J, Thubron EB, Devall M, Soininen
H, Kłoszewska I and Mecocci P. Mitochondrial genes
are altered in blood early in Alzheimer′s disease.
Neurobiol. Aging. (2017) 53: 36-47.
Xie H, Guan J, Borrelli LA, Xu J, Serrano-Pozo A and
Bacskai BJ. Mitochondrial alterations near amyloid
plaques in an Alzheimer′s disease mouse model. J.
Neurosci. (2013) 33: 17042-51.
Song DD, Shults CW, Sisk A, Rockenstein E and
Masliah E. Enhanced substantia nigra mitochondrial
pathology in human α-synuclein transgenic mice after
treatment with MPTP1. Exp. Neurol. (2004) 186:
158-72.
Amo T, Saiki S, Sawayama T, Sato S and Hattori N.
Detailed analysis of mitochondrial respiratory chain
defects caused by loss of PINK1. Neurosci. Lett.
(2014) 580: 37-40.
Mullin S and Schapira A. α-Synuclein and
mitochondrial dysfunction in Parkinson’s disease. Mol.
Neurobiol. (2013) 47: 587-97.
Carmo C, Naia L, Lopes C and Rego AC. Mitochondrial
dysfunction in Huntington’s disease. Adv. Exp. Med.
Biol. (2018) 1049: 59-83.
Damiano M, Galvan L, Déglon N and Brouillet E.
Mitochondria in Huntington′s disease. BBA-Mol Basis
Dis. (2010) 1802: 52-61.
Golpich M, Amini E, Mohamed Z, Azman Ali R,
Mohamed Ibrahim N and Ahmadiani A. Mitochondrial
dysfunction and biogenesis in neurodegenerative
diseases: pathogenesis and treatment. CNS Neurosci.
Ther. (2017) 23: 5-22.
Brealey D and Singer M. Mitochondrial dysfunction in
sepsis. Curr. Infect. Dis. Rep. (2003) 5: 365-71.
Singer M. Mitochondrial function in sepsis: acute
phase versus multiple organ failure. Crit. Care Med.
(2007) 35: S441-S8.
Noh H, Jeon J and Seo H. Systemic injection of
LPS induces region-specific neuroinflammation and
mitochondrial dysfunction in normal mouse brain.
Neurochem. Int. (2014) 69: 35-40.
Galley HF. Oxidative stress and mitochondrial
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
dysfunction in sepsis. Br. J. Anaesth . (2011) 107:
57-64.
Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger
W, Brohi K, Itagaki K and Hauser CJ. Circulating
mitochondrial DAMPs cause inflammatory responses
to injury. Nature (2010) 464: 104.
Chang AL, Ulrich A, Suliman HB and Piantadosi CA.
Redox regulation of mitophagy in the lung during
murine Staphylococcus aureus sepsis. Free Radic.
Biol. Med. (2015) 78: 179-89.
Widdrington JD, Gomez-Duran A, Pyle A, Ruchaud-
Sparagano MH, Scott J, Baudouin SV, Rostron AJ,
Lovat PE, Chinnery PF and Simpson AJ. Exposure
of monocytic cells to lipopolysaccharide induces
coordinated endotoxin tolerance, mitochondrial
biogenesis, mitophagy, and antioxidant defenses.
Front. Immunol. (2018) 9: 2217.
Dudkina NV, Sunderhaus S, Boekema EJ and
Braun HP. The higher level of organization of the
oxidative phosphorylation system: mitochondrial
supercomplexes. J. Bioenerg. Biomembr . (2008) 40:
419.
Zickermann V, Kerscher S, Zwicker K, Tocilescu
MA, Radermacher M and Brandt U. Architecture of
complex I and its implications for electron transfer and
proton pumping. Biochim. Biophys. Acta Bioenerg.
(2009) 1787: 574-83.
Folbergrová J, Ješina P, Drahota Z, Lisý V, Haugvicová
R, Vojtíšková A and Houštěk J. Mitochondrial
complex I inhibition in cerebral cortex of immature
rats following homocysteic acid-induced seizures.
Exp. Neurol. (2007) 204: 597-609.
Panov A, Dikalov S, Shalbueva N, Taylor G, Sherer T
and Greenamyre JT. Rotenone model of Parkinson′s
disease: Multiple brain mitochondria dysfunctions
after short-term systemic rotenone intoxication. World
J. Biol. Chem. (2005) 280: 42026-35.
Zhou L, Wang W, Hoppel C, Liu J and Zhu X.
Parkinson′s disease-associated pathogenic VPS35
mutation causes complex I deficits. BBA-Mol Basis
Dis. (2017) 1863: 2791-5.
Orth M and Schapira A. Mitochondria and degenerative
disorders. Am. J. Med. Genet. A (2001) 106: 27-36.
López-Armada MJ, Riveiro-Naveira RR, Vaamonde-
García C and Valcárcel-Ares MN. Mitochondrial
dysfunction and the inflammatory response.
Mitochondrion (2013) 13: 106-18.
Piantadosi CA and Suliman HB. Redox regulation
of mitochondrial biogenesis. Free Radic. Biol. Med.
(2012) 53: 2043-53.
Shaerzadeh F, Ahmadiani A, Esmaeili MA, Ansari N,
Asadi S, Tusi SK, Sonboli A, Ghahremanzamaneh
M and Khodagholi F. Antioxidant and antiglycating
activities of Salvia sahendica and its protective effect
against oxidative stress in neuron-like PC12 cells. J.
Nat. Med. (2011) 65: 455.
Uyemura SA, Luo S, Vieira M, Moreno SN and
Docampo R. Oxidative phosphorylation and
rotenone-insensitive malate-and NADH-quinone
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
Manouchehri N et al. / IJPR (2019), 18 (3): 1445-14551454
oxidoreductases in Plasmodium yoelii yoelii
mitochondria in situ. J. Biol. Chem. (2004) 279: 385-
93.
Mosmann T. Rapid colorimetric assay for cellular
growth and survival: application to proliferation and
cytotoxicity assays. J. Immunol. Methods (1983) 65:
55-63.
Bradford MM. A rapid and sensitive method for
the quantitation of microgram quantities of protein
utilizing the principle of protein-dye binding . Anal.
Biochem. (1976) 72: 248-54.
Zhu L, Zuo W, Yang H, Zhang H, Luo H, Ye D, Lin X,
Mao J, Feng J and Chen L. Involvement of volume-
activated chloride channels in H2O2 preconditioning
against oxidant-induced injury through modulating
cell volume regulation mechanisms and membrane
permeability in PC12 cells. Mol. Neurobiol. (2013)
48: 205-16.
Mo L, Yang C, Gu M, Zheng D, Lin L, Wang X, Lan A,
Hu F and Feng J. PI3K/Akt signaling pathway-induced
heme oxygenase-1 upregulation mediates the adaptive
cytoprotection of hydrogen peroxide preconditioning
against oxidative injury in PC12 cells. Int. J. Mol.
Med. (2012) 30: 314-20.
Meloni BP, Tilbrook PA, Boulos S, Arthur PG and
Knuckey NW. Erythropoietin preconditioning in
neuronal cultures: signaling, protection from in-vitro
ischemia, and proteomic analysis. J. Neurosci. Res.
(2006) 83: 584-93.
Zhang Z, Ji M, Liao Y, Yang J and Gao J.
Endotoxin tolerance induced by lipopolysaccharide
preconditioning protects against surgery-induced
cognitive impairment in aging mice. Mol. Med. Rep .
(2018) 17: 3845-52.
Turner RC, Naser ZJ, Lucke-Wold BP, Logsdon AF,
Vangilder RL, Matsumoto RR, Huber JD and Rosen CL.
Single low-dose lipopolysaccharide preconditioning:
neuroprotective against axonal injury and modulates
glial cells. Neuroimmunol. Neuroinflamm. (2017) 4: 6.
Vartanian KB, Stevens SL, Marsh BJ, Williams-
Karnesky R, Lessov NS and Stenzel-Poore MP. LPS
preconditioning redirects TLR signaling following
stroke: TRIF-IRF3 plays a seminal role in mediating
tolerance to ischemic injury. J. Neuroinflammation
(2011) 8: 140.
Wang Z, Zhou Y, Yu Y, He K and Cheng LM.
Lipopolysaccharide preconditioning increased the
level of regulatory B cells in the spleen after acute
ischaemia/reperfusion in mice. Brain Res. (2018)
1701: 46-57.
Amini E, Golpich M, Farjam AS, Kamalidehghan B,
Mohamed Z, Ibrahim NM, Ahmadiani A and Raymond
AA. Brain lipopolysaccharide preconditioning-
induced gene reprogramming mediates a tolerance
state in electroconvulsive shock model of epilepsy.
Front. Pharmacol. (2018) 9: 416.
Pan J, Cai R, Chen Y, Li Y, Lin W, Wu J and
Wang X. Analysis the effect of hyperbaric oxygen
preconditioning on neuronal apoptosis, Ca2+
concentration and caspases expression after spinal
cord injury in rats. Eur. Rev. Med. Pharmacol. Sci.
(2018) 22: 3467-73.
Hillion JA, Takahashi K, Maric D, Ruetzler C, Barker
JL and Hallenbeck JM. Development of an ischemic
tolerance model in a PC12 cell line. J. Cereb. Blood
Flow Metab. (2005) 25: 154-62.
Callahan LA and Supinski GS. Downregulation of
diaphragm electron transport chain and glycolytic
enzyme gene expression in sepsis. J. Appl. Physiol.
(2005) 99: 1120-6.
Voloboueva LA and Giffard RG. Inflammation,
mitochondria, and the inhibition of adult neurogenesis.
J. Neurosci. Res. (2011) 89: 1989-96.
Thakur P and Nehru B. Inhibition of neuroinflammation
and mitochondrial dysfunctions by carbenoxolone
in the rotenone model of Parkinson’s disease . Mol.
Neurobiol. (2015) 51: 209-19.
Choi DY, Liu M, Hunter RL, Cass WA, Pandya JD,
Sullivan PG, Shin EJ, Kim HC, Gash DM and Bing G.
Striatal neuroinflammation promotes Parkinsonism in
rats. PLoS One (2009) 4: e5482.
Lopez-Armada M, Carames B, Martin M, Cillero-
Pastor B, Lires-Dean M, Fuentes-Boquete I, Arenas J
and Blanco F. Mitochondrial activity is modulated by
TNFα and IL-1β in normal human chondrocyte cells.
Osteoarthr. Cartil. (2006) 14: 1011-22.
Maneiro E, Lopez-Armada M, De Andres M, Carames
B, Martin M, Bonilla A, Del Hoyo P, Galdo F, Arenas
J and Blanco F. Effect of nitric oxide on mitochondrial
respiratory activity of human articular chondrocytes.
Ann. Rheum. Dis. (2005) 64: 388-95.
Kim J, Xu M, Xo R, Mates A, Wilson G, Pearsall
IV A and Grishko V. Mitochondrial DNA damage is
involved in apoptosis caused by pro-inflammatory
cytokines in human OA chondrocytes. Osteoarthr.
Cartil. (2010) 18: 424-32.
Guidarelli A, Cerioni L and Cantoni O. Inhibition of
complex III promotes loss of Ca2+ dependence for
mitochondrial superoxide formation and permeability
transition evoked by peroxynitrite. J. Cell Sci. (2007)
120: 1908-14.
Ding Y and Li L. Lipopolysaccharide preconditioning
induces protection against lipopolysaccharide-induced
neurotoxicity in organotypic midbrain slice culture.
Neurosci. Bull. (2008) 24: 209-18.
Rao J, Qin J, Qian X, Lu L, Wang P, Wu Z, Zhai
Y, Zhang F, Li G and Wang X. Lipopolysaccharide
preconditioning protects hepatocytes from ischemia/
reperfusion injury (IRI) through inhibiting ATF4-
CHOP pathway in mice. PLoS One (2013) 8: e65568.
Zhang Q, Bian H, Guo L and Zhu H. Pharmacologic
preconditioning with berberine attenuating ischemia-
induced apoptosis and promoting autophagy in neuron.
Am. J. Transl. Res. (2016) 8: 1197.
Cai M, Yang Q, Li G, Sun S, Chen Y, Tian L and Dong
H. Activation of cannabinoid receptor 1 is involved
in protection against mitochondrial dysfunction and
cerebral ischaemic tolerance induced by isoflurane
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
The role of mitochondrial complex I in the mechanism underlying LPS-PC neuroprotection1455
preconditioning. Br. J. Anaesth. (2017) 119: 1213-23.
Dave KR, Saul I, Busto R, Ginsberg MD, Sick TJ and
Pérez-Pinzón MA. Ischemic preconditioning preserves
mitochondrial function after global cerebral ischemia
in rat hippocampus. J. Cereb. Blood Flow Metab.
(2001) 21: 1401-10.
Zhang HX, Du GH and Zhang JT. Ischemic pre-
conditioning preserves brain mitochondrial functions
during the middle cerebral artery occlusion in rat.
Neurol. Res. (2003) 25: 471-6.
Dave KR, Saul I, Busto R, Ginsberg MD, Sick TJ and
Perez-Pinzon MA. Ischemic preconditioning preserves
mitochondrial function after global cerebral ischemia
in rat hippocampus. J. Cereb. Blood Flow Metab .
(2001) 21: 1401-10.
(59)
(60)
(61)
Stetler RA, Leak RK, Yin W, Zhang L, Wang S, Gao
Y and Chen J. Mitochondrial biogenesis contributes
to ischemic neuroprotection afforded by LPS pre-
conditioning. J. Neurochem. (2012) 2: 125-37.
Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B,
Melendez JA and Robinson JP. Mitochondrial complex
I inhibitor rotenone induces apoptosis through
enhancing mitochondrial reactive oxygen species
production. J. Biol. Chem. (2003) 278: 8516-25.
Heinz S, Freyberger A, Lawrenz B, Schladt L,
Schmuck G and Ellinger-Ziegelbauer H. Mechanistic
investigations of the mitochondrial complex I inhibitor
rotenone in the context of pharmacological and safety
evaluation. Sci. Rep. (2017) 7: 45465.