Anti-tumor Effect of Ginkgo biloba Exocarp Extracts on B16 Melanoma Bearing Mice Involving P I3K/Akt/HIF-1α/VEGF Signaling Pathways

Document Type: Research article

Authors

1 Department of Pharmacology, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, China.

2 Department of Pharmacology, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, China

3 Department of Combination of Traditional Chinese and Western Medicine, Medical College of Yangzhou University, Yangzhou, Jiangsu, 225001, China.

4 Department of Pathology, Medical College of Yangzhou University, Yangzhou, Jiangsu, 225001, China

5 Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.

Abstract

The objective of this study is to investigate the anti-tumor effect of Ginkgo biloba exocarp extracts (GBEE) on B16 melanoma bearing mice and its related molecular mechanisms. The B16-F10 melanoma solid tumor model was established in C57BL/6J mice. The tumor-bearing mice were treated with GBEE (50, 100, 200 mg/kg), taking cis-Dichlorodiamineplatinum (Ⅱ) (DDP, 3 mg/kg) as positive control and normal saline (NS) as model control. After 17 days of administration, the transplanted tumors was stripped and weighed, and the inhibition rate was calculated. Quantitative Reverse transcription Polymerase chain reaction (qRT-PCR), Western Blot and immunohistochemistry were applied to detect mRNA and protein levels of related factors in B16 transplanted tumor tissues. The results indicated that GBEE (50, 100, 200 mg/kg) inhibited the growth of B16 transplanted solid tumor in C57BL/6J mice. Meanwhile, it inhibited the expression of CD34 and reduced microvessel density (MVD) in a dose-dependent manner. Moreover, GBEE dose-dependently down-regulated the mRNA and protein levels of hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), and vascular endothelial growth factor receptor 2 (VEGFR2). The phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) proteins were not changed obviously, but the protein levels of p-PI3K and p-Akt were down-regulated. Overall, the inhibitory effect of GBEE on the growth of B16 melanoma transplant tumor in mice is related to inhibiting angiogenesis, and the mechanism involves the regulation of PI3K/Akt/ HIF-lα/VEGF signaling pathway.

Keywords

Main Subjects